20,353 research outputs found
Ramsey interferometry with ultracold atoms
We examine the passage of ultracold two-level atoms through two separated
laser fields for the nonresonant case. We show that implications of the atomic
quantized motion change dramatically the behavior of the interference fringes
compared to the semiclassical description of this optical Ramsey
interferometer. Using two-channel recurrence relations we are able to express
the double-laser scattering amplitudes by means of the single-laser ones and to
give explicit analytical results. When considering slower and slower atoms, the
transmission probability of the system changes considerably from an
interference behavior to a regime where scattering resonances prevail. This may
be understood in terms of different families of trajectories that dominate the
overall transmission probability in the weak field or in the strong field
limit.Comment: 5 figures, 4 page
Recommended from our members
Pseudemys concinna
Number of Pages: 12Integrative BiologyGeological Science
Numerical evolution of matter in dynamical axisymmetric black hole spacetimes. I. Methods and tests
We have developed a numerical code to study the evolution of self-gravitating
matter in dynamic black hole axisymmetric spacetimes in general relativity. The
matter fields are evolved with a high-resolution shock-capturing scheme that
uses the characteristic information of the general relativistic hydrodynamic
equations to build up a linearized Riemann solver. The spacetime is evolved
with an axisymmetric ADM code designed to evolve a wormhole in full general
relativity. We discuss the numerical and algorithmic issues related to the
effective coupling of the hydrodynamical and spacetime pieces of the code, as
well as the numerical methods and gauge conditions we use to evolve such
spacetimes. The code has been put through a series of tests that verify that it
functions correctly. Particularly, we develop and describe a new set of testbed
calculations and techniques designed to handle dynamically sliced,
self-gravitating matter flows on black holes, and subject the code to these
tests. We make some studies of the spherical and axisymmetric accretion onto a
dynamic black hole, the fully dynamical evolution of imploding shells of dust
with a black hole, the evolution of matter in rotating spacetimes, the
gravitational radiation induced by the presence of the matter fields and the
behavior of apparent horizons through the evolution.Comment: 42 pages, 20 figures, submitted to Phys Rev
Performance improvement of DSS-13 34-meter beam-waveguide antenna using the JPL microwave holography methodology
Described here is the application of the microwave holography technique to Deep Space Station (DSS) 13. The project goal of obtaining a rigging angle surface rms error of 0.43 mm or better was met. The Jet Propulsion Laboratory-developed holography algorithms enabled a reduction of the surface error of the DSS-13 antenna from the optically set 0.83 mm axial rms error down to 0.40 mm rms, providing an additional 4.1 dB of performance at 32 GHz
User's manual for XTRAN2L (version 1.2): A program for solving the general-frequency unsteady transonic small-disturbance equation
The development, use and operation of the XTRAN2L program that solves the two dimensional unsteady transonic small disturbance potential equation are described. The XTRAN2L program is used to calculate steady and unsteady transonic flow fields about airfoils and is capable of performing self contained transonic flutter calculations. Operation of the XTRAN2L code is described, and tables defining all input variables, including default values, are presented. Sample cases that use various program options are shown to illustrate operation of XTRAN2L. Computer listings containing input and selected output are included as an aid to the user
Model-independent assessment of current direct searches for spin-dependent dark matter
I evaluate the current results of spin-dependent weakly interacting massive
particle (WIMP) searches within a model-independent framework, showing the most
restrictive limits to date derive from the combination of xenon and sodium
iodide experiments. The extension of this analysis to the case of positive
signal experiments is elaborated.Comment: 4 pages, 4 figures, revised and accepted for publication on Phys.
Rev. Let
Gravitational waves from black hole collisions via an eclectic approach
We present the first results in a new program intended to make the best use
of all available technologies to provide an effective understanding of waves
from inspiralling black hole binaries in time for imminent observations. In
particular, we address the problem of combining the close-limit approximation
describing ringing black holes and full numerical relativity, required for
essentially nonlinear interactions. We demonstrate the effectiveness of our
approach using general methods for a model problem, the head-on collision of
black holes. Our method allows a more direct physical understanding of these
collisions indicating clearly when non-linear methods are important. The
success of this method supports our expectation that this unified approach will
be able to provide astrophysically relevant results for black hole binaries in
time to assist gravitational wave observations.Comment: 4 pages, 3 eps figures, Revte
- …