20,353 research outputs found

    Ramsey interferometry with ultracold atoms

    Full text link
    We examine the passage of ultracold two-level atoms through two separated laser fields for the nonresonant case. We show that implications of the atomic quantized motion change dramatically the behavior of the interference fringes compared to the semiclassical description of this optical Ramsey interferometer. Using two-channel recurrence relations we are able to express the double-laser scattering amplitudes by means of the single-laser ones and to give explicit analytical results. When considering slower and slower atoms, the transmission probability of the system changes considerably from an interference behavior to a regime where scattering resonances prevail. This may be understood in terms of different families of trajectories that dominate the overall transmission probability in the weak field or in the strong field limit.Comment: 5 figures, 4 page

    Numerical evolution of matter in dynamical axisymmetric black hole spacetimes. I. Methods and tests

    Full text link
    We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetimes. The code has been put through a series of tests that verify that it functions correctly. Particularly, we develop and describe a new set of testbed calculations and techniques designed to handle dynamically sliced, self-gravitating matter flows on black holes, and subject the code to these tests. We make some studies of the spherical and axisymmetric accretion onto a dynamic black hole, the fully dynamical evolution of imploding shells of dust with a black hole, the evolution of matter in rotating spacetimes, the gravitational radiation induced by the presence of the matter fields and the behavior of apparent horizons through the evolution.Comment: 42 pages, 20 figures, submitted to Phys Rev

    Performance improvement of DSS-13 34-meter beam-waveguide antenna using the JPL microwave holography methodology

    Get PDF
    Described here is the application of the microwave holography technique to Deep Space Station (DSS) 13. The project goal of obtaining a rigging angle surface rms error of 0.43 mm or better was met. The Jet Propulsion Laboratory-developed holography algorithms enabled a reduction of the surface error of the DSS-13 antenna from the optically set 0.83 mm axial rms error down to 0.40 mm rms, providing an additional 4.1 dB of performance at 32 GHz

    User's manual for XTRAN2L (version 1.2): A program for solving the general-frequency unsteady transonic small-disturbance equation

    Get PDF
    The development, use and operation of the XTRAN2L program that solves the two dimensional unsteady transonic small disturbance potential equation are described. The XTRAN2L program is used to calculate steady and unsteady transonic flow fields about airfoils and is capable of performing self contained transonic flutter calculations. Operation of the XTRAN2L code is described, and tables defining all input variables, including default values, are presented. Sample cases that use various program options are shown to illustrate operation of XTRAN2L. Computer listings containing input and selected output are included as an aid to the user

    Model-independent assessment of current direct searches for spin-dependent dark matter

    Full text link
    I evaluate the current results of spin-dependent weakly interacting massive particle (WIMP) searches within a model-independent framework, showing the most restrictive limits to date derive from the combination of xenon and sodium iodide experiments. The extension of this analysis to the case of positive signal experiments is elaborated.Comment: 4 pages, 4 figures, revised and accepted for publication on Phys. Rev. Let

    Gravitational waves from black hole collisions via an eclectic approach

    Full text link
    We present the first results in a new program intended to make the best use of all available technologies to provide an effective understanding of waves from inspiralling black hole binaries in time for imminent observations. In particular, we address the problem of combining the close-limit approximation describing ringing black holes and full numerical relativity, required for essentially nonlinear interactions. We demonstrate the effectiveness of our approach using general methods for a model problem, the head-on collision of black holes. Our method allows a more direct physical understanding of these collisions indicating clearly when non-linear methods are important. The success of this method supports our expectation that this unified approach will be able to provide astrophysically relevant results for black hole binaries in time to assist gravitational wave observations.Comment: 4 pages, 3 eps figures, Revte

    Heidegger’s Last God and the Schelling Connection

    Get PDF
    • …
    corecore