20,011 research outputs found

    Finite element modelling of cold formed stainless steel columns

    Get PDF
    This paper describes the results obtained from a finite element investigation into the load capacity of column members of lipped channel cross-section, cold formed from Type 304 stainless steel, subjected to concentric and eccentric compression loading. The main aims of this investigation were to determine the effects which the non-linearity of the stress-strain behaviour of the material would have on the column behaviour under concentric or eccentric loading. Stress-strain curves derived from tests and design codes are incorporated into non-linear finite element analyses of eccentrically loaded columns and the results obtained are compared with those obtained on the basis of experiments on stainless steel channel columns with the same properties and dimensions. Comparisons of the finite element results and the test results are also made with existing design specifications and conclusions are drawn on the basis of the comparisons

    The mechanisms of calcium homeostasis and signalling in the lens

    Get PDF
    Excessive Ca2+ can be detrimental to cells and raised levels of Ca2+ in human lenses with cortical cataract have been found to play a major role in the opacification process. Ca2+ homeostasis is therefore, recognised as having fundamental importance in lens pathophysiology. Furthermore, Ca2+ plays a central role as a second messenger in cell signalling and mechanisms have evolved which give cells exquisite control over intracellular Ca2+ ([Ca2+]i) via an array of specialised regulatory and signalling proteins. In this review we discuss these mechanisms as they apply to the lens. Ca2+ levels in human aqueous humour are approximately 1 mM and there is a large, 10,000 fold, inwardly directed gradient across the plasma membrane. In the face of such a large gradient highly efficient mechanisms are needed to maintain low [Ca2+]i. The Na+/Ca2+ exchanger (NCX) and plasma membrane Ca2+-ATPase (PMCA) actively remove Ca2+ from the cells, whereas the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum (ER) Ca2+ store. In lens epithelial cells the dominant role is played by the ATPases, whilst in the fibre cells NCX activity appears to be more important. Usually, [Ca2+]i can be increased in a number of ways. Ca2+ influx through the plasma membrane, for example, is mediated by an array of channels with evidence in the lens for the presence of voltage-operated Ca2+ channels (VOCCs), receptor-operated Ca2+ channels (ROCCs) and channels mediating store-operated Ca2+ entry (SOCE). Ca2+ signalling is initiated via activation of G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTK) of which the lens expresses a surprisingly diverse array responding to various neurotransmitters, hormones, growth factors, autocoids and proteases. Downstream of plasma membrane receptors are IP3-gated channels (IP3Rs) and ryanodine receptors (RYRs) located in the ER, which when activated cause a rapid increase in [Ca2+]i and these have also been identified in the lens. Through an appreciation of the diversity and complexity of the mechanisms involved in Ca2+ homeostasis in normal lens cells we move closer to an understanding of the mechanisms which mediate pathological Ca2+ overload as occurs in the process of cataract formation

    A chemical model for lunar non-mare rocks

    Get PDF
    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. It is shown that for these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original but not necessarily primitive lunar materials

    A chemical model for lunar non-mare rocks

    Get PDF
    Nearly all rocks returned from the moon are readily divided into three broad categories on the basis of their chemical compositions: (1) mare basalts, (2) non-mare rocks of basaltic composition (KREEP, VHA), and (3) anorthositic rocks. Only mare basalts may unambiguously be considered to have original igneous textures and are widely understood to have an igneous origin. Nearly all other lunar rocks have lost their original textures during metamorphic and impact processes. For these rocks one must work primarily with chemical data in order to recognize and define rock groups and their possible modes of origin. Non-mare rocks of basaltic composition have chemical compositions consistent with an origin by partial melting of the lunar interior. The simplest origin for rocks of anorthositic chemical composition is the crystallization and removal of ferromagnesian minerals. It is proposed that the rock groups of anorthositic and non-mare basaltic chemical composition could have been generated from a single series of original, but not necessarily primitive, lunar materials

    Latching mechanism Patent

    Get PDF
    Latch for fastening spacecraft docking ring

    Innovation in the energy sector: advancing or frustrating climate policy goals?

    Get PDF
    The energy sector is well known for the relatively modest level of resource that it devotes to research and development (R&D). However, the incremental pace of energy innovation has speeded up in the last decade as measured by public sector R&D budgets, deployment of alternative technologies and novel institutional arrangements. While much of this effort has been targeted at technologies that promise to reduce carbon dioxide (CO2) emissions, there have also been major innovations that extend the fossil fuel resource base and reduce the cost of extraction. The last decade’s developments can be seen in terms of a challenge to the existing energy paradigm in parallel with a renewed innovative response focusing on conventional fuels and technologies. This paper examines this tension, by exploring the expectations of a variety of organisations in both the public and private sector regarding energy sector developments and by analysing private sector expenditure on energy research and development (R&D) and public sector budgets for energy R&D and demonstration (RD&D). Scenarios and outlook exercises that have been published since 2013 reveal a wide range of beliefs about the future development of the energy system. The contrasting views underpinning the different scenarios are reflected in divergent patterns of R&D investment between the private and public sectors. There appears to be a tension between the drive to transform energy systems, on the part of public bodies, mainly motivated by the need to combat global climate change, and private sector activity, which tends to reinforce and extend existing patterns of energy provision. The paper addresses, but not answer definitively, the key question as to whether technological change is enabling or frustrating ambitious carbon goals

    Optically exciting a magnetic memory - A feasibility study

    Get PDF
    Rare earth iron garnets were used in experiments to determine the feasibility of optically pumping a magnetic material to effect the switching process. It was found that rare earth garnets are limited by an absorption edge, only terbium and dysprosium offer a possibility of pumping at energies below the conduction band edge

    SOME IMPERATIVES OF THE GREEN REVOLUTION: TECHNICAL EFFICIENCY AND OWNERSHIP OF INPUTS IN INDIAN AGRICULTURE

    Get PDF
    This paper attempts to ascertain the requirements (in terms of ownership of factors of production) for successful adaptation to the Green Revolution in Indian agriculture. We estimate stochastic production frontiers for wheat in two Indian states: Haryana (which has been significantly affected by the Green Revolution) and Madhya Pradesh (where the Green Revolution has had much less effect). In Haryana, but not in Madhya Pradesh, larger farm size and ownership of land and machines positively influence technical efficiency. Thus, with the Green Revolution advancing, land consolidation and vesting of clear ownership rights of land and capital with farmers becomes important.Environmental Economics and Policy,

    Solar Seismology from Space. a Conference at Snowmass, Colorado

    Get PDF
    The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure

    The effect of resin on the impact damage tolerance of graphite-epoxy laminates

    Get PDF
    The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance
    corecore