5,235 research outputs found

    An Anomalous UV Extension in NGC6251

    Get PDF
    Deep U-band FOC images of the nuclear region of NGC6251 have revealed a region of extended emission which is most probably radiation scattered from a continuum source in the nucleus. This radiation lies interior to a dust ring, is nearly perpendicular to the radio jet axis, and is seen primarily in the FOC U and b filters. The extension has a low observed polarization(≤10\le 10%), and is unlikely to arise from line emission. We know of no other examples similar to what we have found in NGC 6251, and we offer some tentative explanations. The nuclear morphology shows clear similarities to that seen in the nucleus of NGC 4261 except for the extended U-band radiation.Comment: 14 pages AAStex format + 4 figures; accepted for publication in ApJ Letter

    The z<=0.1 Surface Brightness Distribution

    Full text link
    The surface brightness distribution (SBD) function describes the number density of galaxies as measured against their central surface brightness. Because detecting galaxies with low central surface brightnesses is both time-consuming and complicated, determining the shape of this distribution function can be difficult. In a recent paper Cross, et al. suggested a bell-shaped SBD disk-galaxy function which peaks near the canonical Freeman value of 21.7 and then falls off significantly by 23.5 B mag arcsec-2. This is in contradiction to previous studies which have typically found flat (slope=0) SBD functions out to 24 - 25 B mag arcsec^-2 (the survey limits). Here we take advantage of a recent surface-brightness limited survey by Andreon & Cuillandre which reaches considerably fainter magnitudes than the Cross, et.al sample (M_B reaches fainter than -12 for Andreon & Cuillandre while the Cross, et.al sample is limited to M_B < -16) to re-evaluate both the SBD function as found by their data and the SBD for a wide variety of galaxy surveys, including the Cross, et al. data. The result is a SBD function with a flat slope out through the survey limits of 24.5 B mag arcsec^-2, with high confidence limits.Comment: 5 pages including 5 figures. accepted by A&A

    In search of mineral wealth : the South Australian Geological Survey and Department of Mines and Energy to 1944

    Get PDF
    Thesis (M.A.) -- University of Adelaide, Dept. of History, 198

    Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging

    Get PDF
    We report results of an experimental investigation into the effects of small-scale (mm-cm) heterogeneities on solute spreading and mixing in a Berea sandstone core. Pulse-tracer tests have been carried out in the Péclet number regime Pe = 6-40 and are supplemented by a unique combination of two imaging techniques. X-ray computed tomography (CT) is used to quantify subcore-scale heterogeneities in terms of permeability contrasts at a spatial resolution of approximately 10 mm3, while [11C] positron emission tomography (PET) is applied to image the spatial and temporal evolution of the full tracer plume non-invasively. To account for both advective spreading and local (Fickian) mixing as driving mechanisms for solute transport, a streamtube model is applied that is based on the one-dimensional advection-dispersion equation. We refer to our modelling approach as semideterministic, because the spatial arrangement of the streamtubes and the corresponding solute travel times are known from the measured rock's permeability map, which required only small adjustments to match the measured tracer breakthrough curve. The model reproduces the three-dimensional PET measurements accurately by capturing the larger-scale tracer plume deformation as well as subcore-scale mixing, while confirming negligible transverse dispersion over the scale of the experiment. We suggest that the obtained longitudinal dispersivity (0.10±0.02 cm) is rock rather than sample specific, because of the ability of the model to decouple subcore-scale permeability heterogeneity effects from those of local dispersion. As such, the approach presented here proves to be very valuable, if not necessary, in the context of reservoir core analyses, because rock samples can rarely be regarded as 'uniformly heterogeneous'
    • …
    corecore