861 research outputs found

    Jamming phase diagram for frictional particles

    Full text link
    The non-equilibrium transition from a fluid-like state to a disordered solid-like state, known as the jamming transition, occurs in a wide variety of physical systems, such as colloidal suspensions and molecular fluids, when the temperature is lowered or the density increased. Shear stress, as temperature, favors the fluid-like state, and must be also considered to define the system 'jamming phase diagram' [1-4]. Frictionless athermal systems [1], for instance, can be described by the zero temperature plane of the jamming diagram in the temperature, density, stress space. Here we consider the jamming of athermal frictional systems [8-13] such as granular materials, which are important to a number of applications from geophysics to industry. At constant volume and applied shear stress[1, 2], we show that while in absence of friction a system is either fluid-like or jammed, in the presence of friction a new region in the density shear-stress plane appears, where new dynamical regimes are found. In this region a system may slip, or even flow with a steady velocity for a long time in response to an applied stress, but then eventually jams. Jamming in non-thermal frictional systems is described here by a phase diagram in the density, shear-stress and friction space

    Experimental study of the compaction dynamics for 2D anisotropic granular materials

    Full text link
    We present an experimental study of the compaction dynamics for two-dimensional anisotropic granular systems. Compaction dynamics is measured at three different scales : (i) the macroscopic scale through the packing fraction ρ\rho, (ii) the mesoscopic scale through both fractions of aligned grains ϕa\phi_{a} and ideally ordered grains ϕio\phi_{io}, and (iii) the microscopic scale through both rotational and translational grain mobilities μr,t\mu_{r,t}. The effect of the grain rotations on the compaction dynamics has been measured. At the macroscopic scale, we have observed a discontinuity in the late stages of the compaction curve. At the mesoscopic scale, we have observed the formation and the growth of domains made of aligned grains. From a microscopic point of view, measurements reveal that the beginning of the compaction process is essentially related to translational motion of the grains. The grains rotations drive mainly the process during the latest stages of compaction.Comment: 8pages, 11 figure

    A fast algorithm for backbones

    Full text link
    A matching algorithm for the identification of backbones in percolation problems is introduced. Using this procedure, percolation backbones are studied in two- to five-dimensional systems containing 1.7x10^7 sites, two orders of magnitude larger than was previously possible using burning algorithms.Comment: 8 pages, 6 .eps figures. Uses epsfig and ijmpc.sty (included). To appear in Int. J. Mod. Phys.

    Glass transition in granular media

    Full text link
    In the framework of schematic hard spheres lattice models for granular media we investigate the phenomenon of the ``jamming transition''. In particular, using Edwards' approach, by analytical calculations at a mean field level, we derive the system phase diagram and show that ``jamming'' corresponds to a phase transition from a ``fluid'' to a ``glassy'' phase, observed when crystallization is avoided. Interestingly, the nature of such a ``glassy'' phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure

    A graph-theoretic account of logics

    Get PDF
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics

    Percolation approach to glassy dynamics with continuously broken ergodicity

    Get PDF
    We show that the relaxation dynamics near a glass transition with continuous ergodicity breaking can be endowed with a geometric interpretation based on percolation theory. At mean-field level this approach is consistent with the mode-coupling theory (MCT) of type-A liquid-glass transitions and allows to disentangle the universal and nonuniversal contributions to MCT relaxation exponents. Scaling predictions for the time correlation function are successfully tested in the F12 schematic model and facilitated spin systems on a Bethe lattice. Our approach immediately suggests the extension of MCT scaling laws to finite spatial dimensions and yields new predictions for dynamic relaxation exponents below an upper critical dimension of 6

    The jamming transition of Granular Media

    Full text link
    We briefly review the basics ideas and results of a recently proposed statistical mechanical approach to granular materials. Using lattice models from standard Statistical Mechanics and results from a mean field replica approach and Monte Carlo simulations we find a jamming transition in granular media closely related to the glass transition in super-cooled liquids. These models reproduce the logarithmic relaxation in granular compaction and reversible-irreversible lines, in agreement with experimental data. The models also exhibit aging effects and breakdown of the usual fluctuation dissipation relation. It is shown that the glass transition may be responsible for the logarithmic relaxation and may be related to the cooperative effects underlying many phenomena of granular materials such as the Reynolds transition.Comment: 18 pages with 6 postscript figures. to appear in J.Phys: Cond. Ma

    International Migration and the (Un)happiness Push: Evidence from Polish Longitudinal Data

    Get PDF
    This article analyzes the impact of (un)happiness on the international migration decision. It uses a rich longitudinal household-level database, the Polish Social Diagnosis, to identify migration intentions, as well as subsequent actual migration, allowing us to overcome the issue of reverse causality present in previous studies of the nexus between happiness and migration. In addition, we assess the role of individual and household levels of happiness on migration behaviors and find that unhappy individuals from unhappy households are significantly more likely to declare their intentions to migrate abroad. In terms of actual migration, however, the unhappiness push significantly affects the odds of international migration only for selected subgroups, such as women and employed individuals. For other individuals, the unhappiness-induced migration plans remain mostly unrealized. Our article shows that push and pull factors, including happiness, might exert heterogenous effects on migration intentions and actual realizations. As a consequence, migration scholars should be careful when drawing conclusions on the determinants of actual migration behaviors by looking at determinants of migration intentions
    corecore