4,226 research outputs found
A Generic Renormalization Method in Curved Spaces and at Finite Temperature
Based only on simple principles of renormalization in coordinate space, we
derive closed renormalized amplitudes and renormalization group constants at 1-
and 2-loop orders for scalar field theories in general backgrounds. This is
achieved through a generic renormalization procedure we develop exploiting the
central idea behind differential renormalization, which needs as only inputs
the propagator and the appropriate laplacian for the backgrounds in question.
We work out this generic coordinate space renormalization in some detail, and
subsequently back it up with specific calculations for scalar theories both on
curved backgrounds, manifestly preserving diffeomorphism invariance, and at
finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1
Finite-size scaling exponents and entanglement in the two-level BCS model
We analyze the finite-size properties of the two-level BCS model. Using the
continuous unitary transformation technique, we show that nontrivial scaling
exponents arise at the quantum critical point for various observables such as
the magnetization or the spin-spin correlation functions. We also discuss the
entanglement properties of the ground state through the concurrence which
appears to be singular at the transition.Comment: 4 pages, 3 figures, published versio
Superballistic Diffusion of Entanglement in Disordered Spin Chains
We study the dynamics of a single excitation in an infinite XXZ spin chain,
which is launched from the origin. We study the time evolution of the spread of
entanglement in the spin chain and obtain an expression for the second order
spatial moment of concurrence, about the origin, for both ordered and
disordered chains. In this way, we show that a finite central disordered region
can lead to sustained superballistic growth in the second order spatial moment
of entanglement within the chain.Comment: 5 pages, 1 figur
Violation of area-law scaling for the entanglement entropy in spin 1/2 chains
Entanglement entropy obeys area law scaling for typical physical quantum
systems. This may naively be argued to follow from locality of interactions. We
show that this is not the case by constructing an explicit simple spin chain
Hamiltonian with nearest neighbor interactions that presents an entanglement
volume scaling law. This non-translational model is contrived to have couplings
that force the accumulation of singlet bonds across the half chain. Our result
is complementary to the known relation between non-translational invariant,
nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure
Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries
Motivated by experimental limitations commonly met in the design of solid
state quantum computers, we study the problems of non-local Hamiltonian
simulation and non-local gate synthesis when only homogeneous local unitaries
are performed in order to tailor the available interaction. Homogeneous (i.e.
identical for all subsystems) local manipulation implies a more refined
classification of interaction Hamiltonians than the inhomogeneous case, as well
as the loss of universality in Hamiltonian simulation. For the case of
symmetric two-qubit interactions, we provide time-optimal protocols for both
Hamiltonian simulation and gate synthesis.Comment: 7 page
Ground state entanglement in quantum spin chains
A microscopic calculation of ground state entanglement for the XY and
Heisenberg models shows the emergence of universal scaling behavior at quantum
phase transitions. Entanglement is thus controlled by conformal symmetry. Away
from the critical point, entanglement gets saturated by a mass scale. Results
borrowed from conformal field theory imply irreversibility of entanglement loss
along renormalization group trajectories. Entanglement does not saturate in
higher dimensions which appears to limit the success of the density matrix
renormalization group technique. A possible connection between majorization and
renormalization group irreversibility emerges from our numerical analysis.Comment: 26 pages, 16 figures, added references, minor changes. Final versio
Simulation of many-qubit quantum computation with matrix product states
Matrix product states provide a natural entanglement basis to represent a
quantum register and operate quantum gates on it. This scheme can be
materialized to simulate a quantum adiabatic algorithm solving hard instances
of a NP-Complete problem. Errors inherent to truncations of the exact action of
interacting gates are controlled by the size of the matrices in the
representation. The property of finding the right solution for an instance and
the expected value of the energy are found to be remarkably robust against
these errors. As a symbolic example, we simulate the algorithm solving a
100-qubit hard instance, that is, finding the correct product state out of ~
10^30 possibilities. Accumulated statistics for up to 60 qubits point at a slow
growth of the average minimum time to solve hard instances with
highly-truncated simulations of adiabatic quantum evolution.Comment: 5 pages, 4 figures, final versio
- …