508 research outputs found

    Nucleotide sequence of traQ and adjacent loci in the Escherichia coli K-12 F-plasmid transfer operon.

    Get PDF

    Nucleotide sequence of traQ and adjacent loci in the Escherichia coli K-12 F-plasmid transfer operon.

    Get PDF
    The F tra operon region that includes genes trbA, traQ, and trbB was analyzed. Determination of the DNA sequence showed that on the tra operon strand, the trbA gene begins 19 nucleotides (nt) distal to traF and encodes a 115-amino-acid, Mr-12,946 protein. The traQ gene begins 399 nt distal to trbA and encodes a 94-amino-acid, Mr-10,867 protein. The trbB gene, which encodes a 179-amino-acid, Mr-19,507 protein, was found to overlap slightly with traQ; its start codon begins 11 nt before the traQ stop codon. Protein analysis and subcellular fractionation of the products expressed by these genes indicated that the trbB product was processed and that the mature form of this protein accumulated in the periplasm. In contrast, the protein products of trbA and traQ appeared to be unprocessed, membrane-associated proteins. The DNA sequence also revealed the presence of a previously unsuspected locus, artA, in the region between trbA and traQ. The artA open reading frame was found to lie on the DNA strand complementary to that of the F tra operon and could encode a 104-amino-acid, 12,132-dalton polypeptide. Since this sequence would not be expressed as part of the tra operon, the activity of a potential artA promoter region was assessed in a galK fusion vector system. In vivo utilization of the artA promoter and translational start sites was also examined by testing expression of an artA-beta-galactosidase fusion protein. These results indicated that the artA gene is expressed from its own promoter

    Optical frequency synthesizer with an integrated erbium tunable laser.

    Get PDF
    Optical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a low-cost, compact size, lightweight, and low-power-consumption solution. In this work, we demonstrate an optical frequency synthesizer using a fully integrated silicon-based tunable laser. The synthesizer can be self-calibrated by tuning the repetition rate of the internal mode-locked laser. A 20 nm tuning range from 1544 to 1564 nm is achieved with ~10-13 frequency instability at 10 s averaging time. Its flexibility and fast reconfigurability are also demonstrated by fine tuning the synthesizer and generating arbitrary specified patterns over time-frequency coordinates. This work promotes the frequency stability of silicon-based integrated tunable lasers and paves the way toward chip-scale low-cost optical frequency synthesizers

    Exact solutions to chaotic and stochastic systems

    Full text link
    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time-series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.Comment: 31 pages, 18 figures (.eps). To appear in Chaos, March 200
    corecore