4,369 research outputs found

    Introduction of CAA into a mathematics course for technology students to address a change in curriculum requirements

    Get PDF
    The mathematical requirements for engineering, science and technology students has been debated for many years and concern has been expressed about the mathematical preparedness of students entering higher education. This paper considers a mathematics course that has been specifically designed to address some of these issues for technology education students. It briefly chronicles the changes that have taken place over its lifetime and evaluates the introduction of Computer Assisted Assessment (CAA) into a course already being delivered using Computer Aided Learning (CAL). Benefits of CAA can be categorised into four main areas. 1. Educational – achieved by setting short, topic related, assessments, each of which has to be passed, thereby increasing curriculum coverage. 2. Students – by allowing them to complete assessments at their own pace removing the stress of the final examination. 3. Financial – increased income to the institution, by broadening access to the course. Improved retention rate due to self-paced learning. 4. Time – staff no longer required to set and mark exams. Most students preferred this method of assessment to traditional exams, because it increased confidence and reduced stress levels. Self-paced working, however, resulted in a minority of students not completing the tests by the deadline

    Reduction in DNA binding activity of the transcription factor Pax-5a in B lymphocytes of aged mice

    Get PDF
    Aging has been associated with intrinsic changes of the humoral immune response, which may lead to an increased occurrence of autoimmune disorders and pathogenic susceptibility. The transcription factor Pax-5 is a key regulator of B cell development. Pax-5a/B cell-specific activator protein and an alternatively spliced isoform, Pax-Sd, may have opposing functions in transcriptional regulation due to the lack of a transactivation domain in Pax-Sd. To study B cell-specific changes that occur during the aging process, we investigated expression patterns of Pax-Sa and Sd in mature B cells of young and aged mice. RNase protection assays showed a similar transcriptional pattern for both age groups that indicates that aging has no affect on transcription initiation or alternative splicing for either isoform, In contrast, a significant reduction in the DNA binding activity of Pax-Sa but not Pax-Sd protein was observed in aged B cells in vitro, while Western blot analyses showed that similar levels of Pax-Sa and Sd proteins were present in both age groups. The observed decrease in Pax-Sa binding activity correlated with changes in expression of two Pax-5 target genes in aged B cells, Expression of the Ig J chain and the secreted form of Ig mu, which are both known to be suppressed by Pax-Sa in mature B cells, were increased in B cells of aged mice, Together, our studies suggest that changes associated with the aging phenotype cause posttranslational modification(s) of Pax-Sa but not Pax-Sd, which may lead to an abnormal B cell phenotype in aged mice, associated with elevated levels of J chain, and secretion of IgM

    How do liquids confined at the nanoscale influence adhesion?

    Full text link
    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies especially in the joints. However, in many biological attachment systems they acts like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion.Comment: 5 pages, 9 color figures. Some figures are in Postscript Level 3 format. Minimal changes with respect to the previous version. Added doi and reference to the published article also inside the pape

    Triplicity and Physical Characteristics of Asteroid (216) Kleopatra

    Full text link
    To take full advantage of the September 2008 opposition passage of the M-type asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis et al., 2008). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64+/-0.02 10^18 Kg. This translates into a bulk density of 3.6 +/-0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ~ 30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.Comment: 35 pages, 3 Tables, 9 Figures. In press to Icaru

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Radio-frequency dressed lattices for ultracold alkali atoms

    Get PDF
    Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration

    The Impact of Vegetation Structure and Spatial Heterogeneity on Invertebrate Biodiversity Within Upland Landscapes

    Get PDF
    Livestock grazing influences vegetation structure and composition at both the patch and wider landscape scale (Milne et al., 1998), and this may have effects on upland invertebrate communities, which in turn influence bird abundance and distribution (Fuller & Gough, 1999; Cole et al., 2002). Of particular importance are open grasslands and wet flushes where invertebrates are abundant and more accessible to birds. However, there have been few studies of invertebrates associated with upland habitats, and most of these have focused on heather moorland, blanket bog, or very fine-scaled structure within grasslands (Dennis et al. 1997; 1998; 2001). This study addresses the relationship between upland invertebrate biodiversity and the spatial and structural diversity of vegetation
    • 

    corecore