904 research outputs found

    On the diurnal variability in F2-region plasma density above the EISCAT Svalbard radar

    Get PDF
    Two long runs of EISCAT Svalbard Radar (ESR), in February 2001 and October 2002, have been analysed with respect to variability in the F2 region peak density and altitude. The diurnal variation in the F2 peak density exhibits one maximum around 12:00 MLT and another around 23:00 MLT, consistent with solar wind controlled transport of EUV ionized plasma across the polar cap from day to night. High density plasma patch material is drawn in through the cusp inflow region independent of IMF <I>B<sub>Y</sub></I>. There is no apparent IMF <I>B<sub>Y</sub></I> asymmetry on the intake of high density plasma, but the trajectory of its motion is strongly <I>B<sub>Y</sub></I> dependent. Comparison with the international reference ionosphere model (IRI2001) clearly demonstrates that the model does not take account of the cross-polar transport of F2-region plasma, and hence has limited applicability in polar cap regions

    Antinuclear Antibodies (ANA) in Gordon Setters with Symmetrical Lupoid Onychodystrophy and Black Hair Follicular Dysplasia

    Get PDF
    Antinuclear antibodies (ANA) were demonstrated in 3 out of 10 Gordon setters with symmetrical lupoid onychodystrophy and in 5 out of 13 Gordon setters with black hair follicular dysplasia. Two dogs showed both symmetrical lupoid onychodystrophy and black hair follicular dysplasia, and one of these was ANA positive. The results suggest that symmetrical lupoid onychodystrophy and black hair follicular dysplasia in the Gordon setter might be autoimmune diseases that are pathogenetically related, which might indicate a common genetic predisposition

    GPS scintillations associated with cusp dynamics and polar cap patches

    Get PDF
    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval

    On the possible role of cusp/cleft precipitation in the formation of polar-cap patches

    No full text
    International audienceThe work describes experimental observations of enhancements in the electron density of the ionospheric F-region created by cusp/cleft particle precipitation at the dayside entry to the polar-cap convection flow. Measurements by meridian scanning photometer and all-sky camera of optical red-line emissions from aurora are used to identify latitudinally narrow bands of soft-particle precipitation responsible for structured enhancements in electron density determined from images obtained by radio tomography. Two examples are discussed in which the electron density features with size scales and magnitudes commensurate with those of patches are shown to be formed by precipitation at the entry region to the anti-sunward flow. In one case the spectrum of the incoming particles results in ionisation being created, for the most part below 250 km, so that the patch will persist only for minutes after convecting away from the auroral source region. However in a second example, at a time when the plasma density of the solar wind was particularly high, a substantial part of the particle-induced enhancement formed above 250 km. It is suggested that, with the reduced recombination loss in the upper F-region, this structure will retain form as a patch during passage in the anti-sunward flow across the polar cap

    On the possible role of cusp/cleft precipitation in the formation of polar-cap patches

    Get PDF

    Dayside Field-Aligned Current Impacts on Ionospheric Irregularities

    Get PDF
    Global Navigation Satellite Systems (GNSS) are subject to disturbances caused by plasma irregularities in the ionosphere. Studies have suggested that in addition to the gradient drift and Kelvin‐Helmholtz instabilities, electron precipitation may be important for phase scintillations in the dayside auroral region. This study combines in situ Swarm data with ground GNSS observations to investigate the potential role of filamentary field‐aligned currents (FACs) on phase scintillations in the dayside auroral region by analyzing 22 events with phase scintillations exceeding 0.45 radians. We observe colocation between regions of severe phase scintillations and highly filamented FACs with fluctuations measured in the spacecraft frame of the order of 20 Hz. The observations indicate that filamentary FACs are crucial drivers for irregularities responsible for creating severe phase scintillations measured in the dayside auroral region and are thus of significant importance in the context of space weather impact on satellite communication.publishedVersio
    corecore