39 research outputs found

    Crustal structure beneath the Trondelag Platform and adjacent areas of the Mid-Norwegian margin, as derived from wide-angle seismic and potential field data

    Get PDF
    The outer mid-Norwegian margin is characterized by strong breakup magmatism and has been extensively surveyed. The crustal structure of the inner continental shelf, however, is less studied, and its relation to the onshore geology, Caledonian structuring, and breakup magmatism remains unclear. Two Ocean Bottom Seismometer profiles were acquired across the Trøndelag Platform in 2003, as part of the Euromargins program. Additional-land stations recorded the marine shots. The P-wave data were modeled by ray-tracing, supported by gravity modeling. Older multi-channel seismic data allowed for interpretation of stratigraphy down to the top of the Triassic. Crystalline basement velocity is ~6 km s-1 onshore. Top basement is difficult to identify offshore, as velocities (5.3-5.7 km s-1) intermediate between typical crystalline crust and Mesozoic sedimentary strata appear 50-80 km from the coast. This layer thickens towards the Klakk-Ytreholmen Fault Complex and predates Permian and later structur-ing. The velocities indicate sedimentary rocks, most likely Devonian. Onshore late- to post-Caledonian detachments have been proposed to extend offshore, based on the magnetic anomaly pattern. We do not find the expected correlation between upper basement velocity structure and detachments. However, there is a distinct, dome-shaped lower-crustal body with a velocity of 6.6-7.0 km s-1. This is thickest under the Froan Basin, and the broad magnetic anomaly used to delineate the detachments correlates with this. The proposed offshore continuation of the detachments thus appears- unreliable. While we find indications of high density and velocity (~7.2 km s-1) lower crust under the Rüs Basin, similar to the proposed igneous underplating of the outer margin, this is poorly constrained near the end of our profiles. The gravity field indicates that this body may be continuous from the pre-breakup basement structures of the Utgard High to the Frøya High, suggesting that it could be an island arc or oceanic terrane-accreted during the Caledonian orogeny. Thus, we find no clear evidence of early Cenozoic igneous underplating of the inner part of the shelf

    Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin

    Get PDF
    The Barents Shear Margin separates the Svalbard and Barents Sea from the North Atlantic. During the break-up of the North Atlantic the plate tectonic configuration was characterized by sequential dextral shear, extension, and eventually contraction and inversion. This generated a complex zone of deformation that contains several structural families of overlapping and reactivated structures. A series of crustal-scale analogue experiments, utilizing a scaled and stratified sand-silicon polymer sequence, was used in the study of the structural evolution of the shear margin. The most significant observations for interpreting the structural configuration of the Barents Shear Margin are the following. Prominent early-stage positive structural elements (e.g. folds, push-ups) interacted with younger (e.g. inversion) structures and contributed to a hybrid final structural pattern. Several structural features that were initiated during the early (dextral shear) stage became overprinted and obliterated in the subsequent stages. All master faults, pull-apart basins, and extensional shear duplexes initiated during the shear stage quickly became linked in the extension stage, generating a connected basin system along the entire shear margin at the stage of maximum extension. The fold pattern was generated during the terminal stage (contraction-inversion became dominant in the basin areas) and was characterized by fold axes striking parallel to the basin margins. These folds, however, strongly affected the shallow intra-basin layers. The experiments reproduced the geometry and positions of the major basins and relations between structural elements (fault-and-fold systems) as observed along and adjacent to the Barents Shear Margin. This supports the present structural model for the shear margin

    Breakup volcanism and plate tectonics in the NW Atlantic

    Get PDF
    The seismic, magnetic, and gravity data presented in this study were provided by TGS. Seismic interpretation was done using HS Kingdom software. Grid interpolations and map compilations were established using Geosoft Oasis Montaj and ArcGis softwares. We would like thank Craig Magee, Alexander Lewis Peace, the Editor and the Associated Editor for helpful comments and guidance that improved the paper. We acknowledge the support from the Research Council of Norway through its Center of Excellence funding scheme, project 223272 (CEED).Peer reviewedPostprin

    Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin

    Get PDF
    The emplacement of igneous intrusions into sedimentary basins mechanically deforms the host rocks and causes hydrocarbon maturation. Existing models of host-rock deformation are investigated using high-quality 3D seismic and industry well data in the western Møre Basin offshore mid-Norway. The models include synemplacement (e.g., elastic bending-related active uplift and volume reduction of metamorphic aureoles) and postemplacement (e.g., differential compaction) mechanisms. We use the seismic interpretations of five horizons in the Cretaceous-Paleogene sequence (Springar, Tang, and Tare Formations) to analyze the host rock deformation induced by the emplacement of the underlying saucer-shaped Tulipan sill. The results show that the sill, emplaced between 55.8 and 54.9 Ma, is responsible for the overlying dome structure observed in the seismic data. Isochron maps of the deformed sediments, as well as deformation of the younger postemplacement sediments, document a good match between the spatial distribution of the dome and the periphery of the sill. The thickness t of the Tulipan is less than 100 m, whereas the amplitude f of the overlying dome ranges between 30 and 70 m. Spectral decomposition maps highlight the distribution of fractures in the upper part of the dome. These fractures are observed in between hydrothermal vent complexes in the outer parts of the dome structure. The 3D seismic horizon interpretation and volume rendering visualization of the Tulipan sill reveal fingers and an overall saucer-shaped geometry. We conclude that a combination of different mechanisms of overburden deformation, including (1) elastic bending, (2) shear failure, and (3) differential compaction, is responsible for the synemplacement formation and the postemplacement modification of the observed dome structure in the Tulipan area

    Post-impact structural crater modification due to sediment loading: An overlooked process

    No full text
    From the proceedings of the Workshop on Impact Craters as Indicators for Planetary Environmental Evolution and Astrobiology held in June 2006 in Östersund, Sweden.Post-impact crater morphology and structure modifications due to sediment loading are analyzed in detail and exemplified in five well-preserved impact craters: Mjølnir, Chesapeake Bay, Chicxulub, Montagnais, and Bosumtwi. The analysis demonstrates that the geometry and the structural and stratigraphic relations of post-impact strata provide information about the amplitude, the spatial distribution, and the mode of post-impact deformation. Reconstruction of the original morphology and structure for the Mjølnir, Chicxulub, and Bosumtwi craters demonstrates the long-term subsidence and differential compaction that takes place between the crater and the outside platform region, and laterally within the crater structure. At Mjølnir, the central high developed as a prominent feature during post-impact burial, the height of the peak ring was enhanced, and the cumulative throw on the rim faults was increased. The original Chicxulub crater exhibited considerably less prominent peakring and inner-ring/crater-rim features than the present crater. The original relief of the peak ring was on the order of 420-570 m (currently 535-575 m); the relief on the inner ring/crater rim was 300 450 m (currently ~700 m). The original Bosumtwi crater exhibited a central uplift/high whose structural relief increased during burial (current height 101-110 m, in contrast to the original height of 85-110 m), whereas the surrounding western part of the annular trough was subdued more that the eastern part, exhibiting original depths of 43-68 m (currently 46 m) and 49-55 m (currently 50 m), respectively. Furthermore, a quantitative model for the porosity change caused by the Chesapeake Bay impact was developed utilizing the modeled density distribution. The model shows that, compared with the surrounding platform, the porosity increased immediately after impact up to 8.5% in the collapsed and brecciated crater center (currently +6% due to post-impact compaction). In contrast, porosity decreased by 2-3% (currently -3 to -4.5% due to post-impact compaction) in the peak-ring region. The lateral variations in porosity at Chesapeake Bay crater are compatible with similar porosity variations at Mjølnir crater, and are considered to be responsible for the moderate Chesapeake Bay gravity signature (annular low of -8 mGal instead of -15 mGal). The analysis shows that the reconstructions and the long-term alterations due to post-impact burial are closely related to the impact-disturbed target-rock volume and a brecciated region of laterally varying thickness and depth varying physical properties. The study further shows that several crater morphological and structural parameters are prone to post-impact burial modification and are either exaggerated or subdued during post-impact burial. Preliminary correction factors are established based on the integrated reconstruction and post-impact deformation analysis. The crater morphological and structural parameters, corrected from post-impact loading and modification effects, can be used to better constrain cratering scaling law estimates and impact-related consequences.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    No full text
    The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the MĂĽsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the MĂĽsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the GjesvĂŚr Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the MĂĽsøy Fault Complex in Carboniferous times. Seismic data over the GjesvĂŚr Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the GjesvĂŚr Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya–Ingøya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea

    Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway - constraints on mantle melting

    No full text
    Continental rifting at the Vøring Margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, a marine survey collecting ocean bottom seismometer, single-channel re!ection, and magnetic data was conducted on the Norwegian Margin to constrain continental breakup and early sea!oor spreading processes. The pro"le described here crosses the northern part of the Vøring Plateau, and the crustal velocity model was constructed through a combination of ray-tracing and forward gravity modeling, the latter corrected for the thermal effects remaining from the sea!oor spreading. We found a maximum igneous crustal thickness of 18 km, decreasing to 6.5 km over the "rst ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism are about twice as large as that of the Møre Margin south of the East Jan Mayen Fracture Zone, which offsets the two margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~150 km to the Lofoten Margin, but without a margin offset. Both the geochemical data and the mean P-wave velocity indicate that there is active mantle upwelling combined with a moderate temperature increase during the earliest mantle melting at the Vøring Margin. The mean P-wave velocity versus crustal thickness also indicates that there is a transition from convection dominated to temperature dominated magma production ~2 M.y. after breakup. The magnetic data were used to derive plate half-spreading rates for the Northern Vøring Margin, which are very similar to that obtained at the Møre Margin. There is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. Proposed end-member hypotheses comprise elevated uppermantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection !uxing mantle rocks through the melt zone. Edge-driven convection does not easily explain these observations, but a mantle plume model in which buoyant plume material !ows laterally to pond in the rift-topography at the base of the lithosphere close to breakup time is promising: When the continents break apart, the hot and buoyant plume-material can !ow up into the rift zone from surrounding areas as the rift transits to drift, and the excess temperature of this material will then cause excess magmatism which dies off as the rift-restricted material is spent. The buoyancy of the plume-material may in addition cause active upwelling which can increase the melting furthermore, and also increase the force on the plate boundaries to enhance plate spreading rate. This conceptual model explains how both excess magmatism and spreading rate will be reduced similarly with time as the plume material is consumed by plate spreading, and thus correlate

    Controls on the tectono-magmatic evolution of a volcanic transform margin: the Vøring Transform Margin, NE-Atlantic

    No full text
    Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM
    corecore