43 research outputs found

    Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold

    Get PDF
    International audienceWhile the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers

    A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters

    Get PDF
    While studying gene expression of the rudivirus SIRV1 in cells of its host, the hyperthermophilic crenarchaeon Sulfolobus, a novel archaeal transcriptional regulator was isolated. The 14 kDa protein, termed Sulfolobus transcription activator 1, Sta1, is encoded on the host chromosome. Its activating effect on transcription initiation from viral promoters was demonstrated in in vitro transcription experiments using a reconstituted host system containing the RNA polymerase, TATA-binding protein (TBP) and transcription factor B (TFB). Most pronounced activation was observed at low concentrations of either of the two transcription factors, TBP or TFB. Sta1 was able to bind viral promoters independently of any component of the host pre-initiation complex. Two binding sites were revealed by footprinting, one located in the core promoter region and the second ∼30 bp upstream of it. Comparative modeling, NMR and circular dichroism of Sta1 indicated that the protein contained a winged helix–turn–helix motif, most probably involved in DNA binding. This strategy of the archaeal virus to co-opt a host cell regulator to promote transcription of its genes resembles eukaryal virus–host relationships

    Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans

    Get PDF
    Funding This work was supported by Fundação de Apoio à Pesquisa do Distrito Federal (FAP-DF)/CNPq, PRONEX grant ID: (FAP-DF, 0193.001.200/2016). VA is supported by the Centre Franco-Indien pour la Promotion de la Recherche Avancée (CEFIPRA) grant No. 5403-1 and ANR-DFG AfuINF grant. IG, VA, and CS were supported by the ANR-FUNHYDRO (ANR-16S-CE110020-01) grant. NG, GB and JW are supported by the Welcome Trust (102705, 097377, 101873, 215599 and 200208) and the Medical Research Council Centre for Medical Mycology (MR/N006364/2). Acknowledgments The authors acknowledge Dr. Lars Erwig, Dr. Jude Bain, and Dr. Kevin MacKenzie of University of Aberdeen for the scientific and technical support in the video microscopy experiments. LMLB was a research fellow of Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We acknowledge Fundação Carlos Chagas Filho de Amparo a Pesquisa do estado do Rio de Janeiro (Faperj) and Pasteur-Roux-Cantarini postdoctoral fellowship for the research fellowships given to GWPN and SSWW, respectively.Peer reviewedPublisher PD

    Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase.

    Get PDF
    International audienceThe structure of a recombinant protein, TyrRS(delta4), corresponding to the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase, has been solved, and its dynamics have been studied by nuclear magnetic resonance (NMR). It is the first structure described for such a domain of a tyrosyl-tRNA synthetase. It consists of a five-stranded beta sheet, packed against two alpha helices on one side and one alpha helix on the other side. A large part of the domain is structurally similar to other functionally unrelated RNA binding proteins. The basic residues known to be essential for tRNA binding and charging are exposed to the solvent on the same face of the molecule. The structure of TyrRS(delta4), together with previous mutagenesis data, allows one to delineate the region of interaction with tRNATyr

    Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the bordetella pertussis adenylate cyclase toxin.

    Get PDF
    International audienceRepeat in toxin (RTX) motifs are nonapeptide sequences found among numerous virulence factors of Gram-negative bacteria. In the presence of calcium, these RTX motifs are able to fold into an idiosyncratic structure called the parallel beta-roll. The adenylate cyclase toxin (CyaA) produced by Bordetella pertussis, the causative agent of whooping cough, is one of the best-characterized RTX cytolysins. CyaA contains a C-terminal receptor domain (RD) that mediates toxin binding to the eukaryotic cell receptor. The receptor-binding domain is composed of about forty RTX motifs organized in five successive blocks (I to V). The RTX blocks are separated by non-RTX flanking regions of variable lengths. It has been shown that block V with its N- and C-terminal flanking regions constitutes an autonomous subdomain required for the toxicity of CyaA. Here, we investigated the calcium-induced biophysical changes of this subdomain to identify the respective contributions of the flanking regions to the folding process of the RTX motifs. We showed that the RTX polypeptides, in the absence of calcium, exhibited the hallmarks of intrinsically disordered proteins and that the C-terminal flanking region was critical for the calcium-dependent folding of the RTX polypeptides, while the N-terminal flanking region was not involved. Furthermore, the secondary and tertiary structures were acquired concomitantly upon cooperative binding of several calcium ions. This suggests that the RTX polypeptide folding is a two-state reaction, from a calcium-free unfolded state to a folded and compact conformation, in which the calcium-bound RTX motifs adopt a beta-roll structure. The relevance of these results to the toxin physiology, in particular to its secretion, is discussed

    Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of Bordetella pertussis adenylate cyclase toxin.

    Get PDF
    International audienceBordetella pertussis, the causative agent of whooping cough, secretes among various toxins an adenylate cyclase (CyaA) that displays a unique mechanism of cell invasion, which involves a direct translocation of its N-terminal catalytic domain (AC, 400 residues) across the plasma membrane of the eukaryotic targeted cells. Once into the cytosol, AC is activated by endogenous calmodulin and produces toxic amounts of cAMP. The structure of AC in complex with the C-terminal part of calmodulin has recently been determined. However, as the structure of the catalytic domain in the absence of calmodulin is still lacking, the molecular basis of AC activation by calmodulin remains largely unknown. To characterize this activation mechanism, we investigated here the biophysical properties of the isolated catalytic domain in solution with or without calmodulin. We found that calmodulin triggered only minor modifications of the protein secondary and tertiary structure but had a pronounced effect on the hydrodynamic properties of AC. Indeed, while the isolated catalytic domain was spherical and hydrated, it underwent a significant elongation as well as compaction and dehydration upon calmodulin interaction. On the basis of these data, we propose a model for the structural transition between the calmodulin-free and calmodulin-bound AC

    Assistance of maltose binding protein to the in vivo folding of the disulfide-rich C-terminal fragment from Plasmodium falciparum merozoite surface protein 1 expressed in Escherichia coli.

    No full text
    International audienceThe C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (F19) is a leading candidate for the development of a malaria vaccine. Successful vaccination trials on primates, immunochemistry, and structural studies have shown the importance of its native conformation for its protective role against infection. F19 is a disulfide-rich protein, and the correct pairing of its 12 half-cystines is required for the native state of the protein. F19 has been produced in the Escherichia coli periplasm, which has an oxidative environment favorable for the formation of disulfide bonds. F19 was either expressed as a fusion with the maltose binding protein (MBP) or directly addressed to the periplasm by fusing it with the MBP signal peptide. Direct expression of F19 in the periplasm led to a misfolded protein with a heterogeneous distribution of disulfide bridges. On the contrary, when produced as a fusion protein with E. coli MBP, the F19 moiety was natively folded. Indeed, after proteolysis of the fusion protein, the resulting F19 possesses the structural characteristics and the immunochemical reactivity of the analogous fragment produced either in baculovirus-infected insect cells or in yeast. These results demonstrate that the positive effect of MBP in assisting the folding of passenger proteins extends to the correct formation of disulfide bridges in vivo. Although proteins or protein fragments fused to MBP have been frequently expressed with success, our comparative study evidences for the first time the helping property of MBP in the oxidative folding of a disulfide-rich protein

    The "pre-molten globule," a new intermediate in protein folding.

    No full text
    In vitro folding studies of several proteins revealed the formation, within 2-4 msec, of transient intermediates with a large far-UV ellipticity but no amide proton protection. To solve the contradiction between the secondary structure contents estimated by these two methods, we characterized the isolated C-terminal fragment F2 of the tryptophan synthase beta 2 subunit. In beta 2, F2 forms its tertiary interactions with the F1 N-terminal region. Hence, in the absence of F1, isolated F2 should remain at an early folding stage with no long-range interactions. We shall show that isolated F2 folds into, and remains in, a "state" called the pre-molten globule, that indeed corresponds to a 2- to 4-msec intermediate. This condensed, but not compact, "state" corresponds to an array of conformations in rapid equilibrium comprising native as well as nonnative secondary structures. It fits the "new view" on the folding process
    corecore