1,124 research outputs found
Apparatus for sequentially transporting containers
Apparatus for transferring and manipulating a plurality of containers in a sequence is disclosed including a mechanical manipulator arm having a gripping device which automatically picks up a container at a fixed pickup position P and transfers it to a processing station. At a processing station X, the container is loaded with silicon wafers and thereafter returned by the arm to the fixed position P at the pickup and return station Y. A plurality of the containers may be processed in sequence from the fixed pickup position by providing a movable carriage upon which container pedestal platforms are supported, at least one of which is an elevator platform. The platforms include abutments for properly positioning the containers for accurate pickup by the manipulator arm
The tone range/telemetry interferometer tracking system for support of sounding rocket payloads
Combined range rate and telemetric interferometer system for radar tracking of scientific sounding rocket
Experimental assessment of a computer program used in Space Shuttle orbiter entry heating analysis
A high temperature reusable surface insulation (HRSI) tile taken from the Space Shuttle orbiter was subjected to a nominal heating rate of 60 kW/sq m in the laboratory. The surface temperature response to this heating was measured and used as input to a computer program which computed the applied heating rate. The program is part of a software system that is used to infer convective heating rates to the orbiter thermal protection system during entry. The measured and computed heating rates are compared. Results confirm the applicability of this program to the determination of flight heat transfer rates from flight measured surface temperature data
Coal-shale interface detection system
A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through
Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs
In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3. The Polyacenes Anthracene, Tetracene, and Pentacene
Gaseous, ionized Polycyclic Aromatic Hydrocarbons (PAH's) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAH's. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 / cm (between about 1340 and 1500 / cm) and near 1180 /cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family
The 5.25 & 5.7 m Astronomical Polycyclic Aromatic Hydrocarbon Emission Features
Astronomical mid-IR spectra show two minor PAH features at 5.25 and 5.7
m (1905 and 1754 cm) that hitherto have been little studied,
but contain information about the astronomical PAH population that complements
that of the major emission bands. Here we report a study involving both
laboratory and theoretical analysis of the fundamentals of PAH spectroscopy
that produce features in this region and use these to analyze the astronomical
spectra. The ISO SWS spectra of fifteen objects showing these PAH features were
considered for this study, of which four have sufficient S/N between 5 and 6
m to allow for an in-depth analysis. All four astronomical spectra show
similar peak positions and profiles. The 5.25 m feature is peaked and
asymmetric, while the 5.7 m feature is broader and flatter. Detailed
analysis of the laboratory spectra and quantum chemical calculations show that
the astronomical 5.25 and 5.7 m bands are a blend of combination,
difference and overtone bands primarily involving CH stretching and CH in-plane
and CH out-of-plane bending fundamental vibrations. The experimental and
computational spectra show that, of all the hydrogen adjacency classes possible
on PAHs, solo and duo hydrogens consistently produce prominent bands at the
observed positions whereas quartet hydrogens do not. In all, this a study
supports the picture that astronomical PAHs are large with compact, regular
structures. From the coupling with primarily strong CH out-of-plane bending
modes one might surmise that the 5.25 and 5.7 m bands track the neutral
PAH population. However, theory suggests the role of charge in these
astronomical bands might also be important.Comment: Accepted ApJ, 40 pages in pre-print, 14 figures, two onlin
The Infrared Spectra of Very Large Irregular Polycyclic Aromatic Hydrocarbons (PAHs): Observational Probes of Astronomical PAH Geometry, Size and Charge
The mid-IR spectra of six large, irregular PAHs with formulae (C84H24 -
C120H36) have been computed using Density Functional Theory (DFT). Trends in
the dominant band positions and intensities are compared to those of large,
compact PAHs as a function of geometry, size and charge. Irregular edge
moieties that are common in terrestrial PAHs, such as bay regions and rings
with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for
all PAHs comprised solely of C and H reported to date, mid-IR emission from
irregular PAHs fails to produce a strong CCstr band at 6.2 um, the position
characteristic of the important, class A astronomical PAH spectra. Earlier
studies showed inclusion of nitrogen within a PAH shifts this to 6.2 um for PAH
cations. Here we show this band shifts to 6.3 um in nitrogenated PAH anions,
close to the position of the CC stretch in class B astronomical PAH spectra.
Thus nitrogenated PAHs may be important in all sources and the peak position of
the CC stretch near 6.2 um appears to directly reflect the PAH cation to anion
ratio. Large irregular PAHs exhibit features at 7.8 um but lack them near 8.6
um. Hence, the 7.7 um astronomical feature is produced by a mixture of small
and large PAHs while the 8.6 um band can only be produced by large compact
PAHs. As with the CCstr, the position and profile of these bands reflect the
PAH cation to anion ratio.Comment: accepted by Ap
- …