78 research outputs found

    Side Differences of Thigh Muscle Cross-Sectional Areas and Maximal Isometric Muscle Force in Bilateral Knees with the Same Radiographic Disease Stage, but Unilateral Frequent Pain – Data from the Osteoarthritis Initiative

    Get PDF
    Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contra-lateral knees without pain, and to examine the correlation between MCSAs and strength in painful vs painless knees. Methods Forty-eight subjects (31 women; 17 men; age 45–78 years) were drawn from 4,796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contra-lateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI database. Results Painful knees showed 5.2% lower extensor MCSAs (P = 0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (P = 0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (P > 0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44 < r < 0.66). Conclusions Knees with frequent pain demonstrate lower MCSAs and force of the quadriceps (but not of other thigh muscles) compared with contra-lateral knees without knee pain with the same radiographic stage. Frequent pain does not appear to affect the correlations between MCSAs and strength in OA knees. The findings suggest that quadriceps strengthening exercise may be useful in treating symptomatic knee OA

    Intuitionistic implication makes model checking hard

    Full text link
    We investigate the complexity of the model checking problem for intuitionistic and modal propositional logics over transitive Kripke models. More specific, we consider intuitionistic logic IPC, basic propositional logic BPL, formal propositional logic FPL, and Jankov's logic KC. We show that the model checking problem is P-complete for the implicational fragments of all these intuitionistic logics. For BPL and FPL we reach P-hardness even on the implicational fragment with only one variable. The same hardness results are obtained for the strictly implicational fragments of their modal companions. Moreover, we investigate whether formulas with less variables and additional connectives make model checking easier. Whereas for variable free formulas outside of the implicational fragment, FPL model checking is shown to be in LOGCFL, the problem remains P-complete for BPL.Comment: 29 pages, 10 figure

    Revision 1 Size and position of the healthy meniscus, and its Correlation with sex, height, weight, and bone area- a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity.</p> <p>Methods</p> <p>Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded.</p> <p>Results</p> <p>The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011).</p> <p>Conclusions</p> <p>These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.</p

    Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Get PDF
    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems

    Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging.</p> <p>Design</p> <p>For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH).</p> <p>Results</p> <p>Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m<sup>2</sup>. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm<sup>2 </sup>and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm<sup>2 </sup>and 1.71 (0.24) mm, respectively, in males.</p> <p>Conclusion</p> <p>These data suggest that medial mJSW values do not decrease with aging in healthy individuals but remain fairly constant throughout the lifespan with "healthy" values of 4.8 mm for females and 5.7 mm for males. Similar trends were seen for cartilage morphology. Results suggest there may be no need to differentiate a t-score and a z-score in OA diagnosis because cartilage thickness and JSW remain constant throughout life in the absence of OA.</p

    北海道における知的障がい者の就労支援に関する一考察

    Get PDF
    知的障がい者の就労について、北海道及び北海道教育委員会が進めている障が いのある人の就労支援の充実に向けた取組の状況を概観することに加えて、北海道内 の特別支援学校在籍者の約8割を占めている知的障がい特別支援学校の現状や就労支 援の取組について整理した。北海道において障がいある人の就労に大きな役割を果た してきた職親会の設立の経緯やなよろ地方職親会の障がい者雇用の状況やジョブコー チ養成研修の成果をまとめた。以上のことを踏まえて、知的障がい者の就労支援やキ ャリア教育の在り方について考察する

    The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care

    Get PDF
    Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

    Reconstruction of the glacial history of the shelf north of the Hinlopen Strait, Svalbard

    No full text
    High-resolution geophysical evidence on the seafloor morphology and acoustic stratigraphy of the shelf north of the Hinlopen Strait (northern Svalbard margin) between 800 27.60N and 810 18.44N and 130 55.76E and 190 20.72E, is presented in this thesis. The geophysical data used are derived from multi-beam bathymetry and sub-bottom acoustic profiling acquired during the RV Maria S. Merian MSM31 cruise. The bathymetric data was further examined to reduce systematic errors and afterwards grid was calculated. The hillshade grid tool was applied in order to enhance the visualization of the seafloor and helped to digitize the submarine features manually. Three sub-marine features were detected and digitized. The most dominant feature is the scours that cover the study area in water depths of 109 m...306 m and are mostly randomly oriented. All the scours were interpreted as iceberg plough-marks. The scours in the western part of the study area are suggested to have formed during the deglaciation of the Svalbard-Barents ice sheet and Hinlopen trough at the end of the Late Weichselian. The scours detected in the eastern study area were associated to iceberg calving from the Hinlopen trough ice-stream during the late Weichselian. The second detected feature is referred to as lineations and was detected at the northeastern part of the study area in water depths of 164 m...745m.The lineations are parallel with a SSW-NNE main orientation and were interpreted as marks by grounded ice-sheet from Svalbard formed during and after the Saalian. Sub-marine hills interpreted as blocks of debris that flowed from the slope into the Sophia basin before the Yermak/Hinlopen Slide (MIS 3). The same features were revealed in the PARASOUND data and two sediment facies were determined. Sediment ‘Facies 1’ represents sediment disturbed by iceberg ploughing, and ‘Facies 2’ implies undisturbed seafloor and semi-pelagic sediments. The sub-glacial detected features are further used to make an approach reconstructing the glacial history of the shelf north of the Hinlopen Strait
    corecore