54 research outputs found

    Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 31 (2012): 169-177, doi:10.1007/s00338-011-0838-z.Many species demonstrate variation in life history attributes in response to gradients in environmental conditions. For fishes, major drivers of life history variation are changes in temperature and food availability. This study examined large-scale variation in the demography of four species of butterflyfishes (Chaetodon citrinellus, C. lunulatus, C. melannotus, and C. trifascialis) between two locations on Australia’s Great Barrier Reef (Lizard Island and One Tree Island, separated by approximately 1200km). Variation in age-based demographic parameters was assessed using the re-parameterised von Bertalanffy growth function. All species displayed measurable differences in body size between locations, with individuals achieving a larger adult size at the higher latitude site (One Tree Island) for three of the four species examined. Resources and abundances of the study species were also measured, revealing some significant differences between locations. For example, for C. trifascialis, there was no difference in its preferred resource or in abundance between locations, yet it achieved a larger body size at the higher latitude location, suggesting a response to temperature. For some species, resources and abundances did vary between locations, limiting the ability to distinguish between a demographic response to temperature as opposed to a response to food or competition. Future studies of life histories and demographics at large spatial scales will need to consider the potentially confounding roles of temperature, resource usage and availability, and abundance / competition in order to disentangle the effects of these environmental variables.This work was supported by a National Science Foundation (USA) Graduate Research Fellowship (MLB) and by PADI Project A.W.A.R.E. (MLB).2012-11-1

    Intestinal Microbiome Richness of Coral Reef Damselfishes (Actinopterygii: Pomacentridae)

    Get PDF
    Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral population structures of reefs. Broadly, damselfish belong to either of two trophic guilds based on whether they are planktivorous or algae-farming. In this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5 planktivorous and 5 algae-farming damselfish species (Pomacentridae) from the Great Barrier Reef. We detected Gammaproteobacteria ASVs belonging to the genus Actinobacillus in 80% of sampled individuals across the 2 trophic guilds, thus, bacteria in this genus can be considered possible core members of pomacentrid microbiomes. Algae-farming damselfish had greater bacterial alpha-diversity, a more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared 7 ± 3 ASVs. Our data also highlight differences in microbiomes associated with both trophic guilds. For instance, algae-farming damselfish were enriched in Pasteurellaceae, whilst planktivorous damselfish in Vibrionaceae. Finally, we show shifts in bacterial community composition along the intestines. ASVs associated with the classes Bacteroidia, Clostridia, and Mollicutes bacteria were predominant in the anterior intestinal regions while Gammaproteobacteria abundance was higher in the stomach. Our results suggest that the richness of the intestinal bacterial communities of damselfish reflects host species diet and trophic guild

    The origin of the parrotfish species Scarus compressus in the Tropical Eastern Pacific: region-wide hybridization between ancient species pairs

    Get PDF
    BACKGROUND: In the Tropical Eastern Pacific (TEP), four species of parrotfishes with complex phylogeographic histories co-occur in sympatry on rocky reefs from Baja California to Ecuador: Scarus compressus, S. ghobban, S. perrico, and S. rubroviolaceus. The most divergent, S. perrico, separated from a Central Indo-Pacific ancestor in the late Miocene (6.6 Ma). We tested the hypothesis that S. compressus was the result of ongoing hybridization among the other three species by sequencing four nuclear markers and a mitochondrial locus in samples spanning 2/3 of the latitudinal extent of the TEP. RESULTS: A Structure model indicated that K = 3 fit the nuclear data and that S. compressus individuals had admixed genomes. Our data could correctly detect and assign pure adults and F1 hybrids with > 0.90 probability, and correct assignment of F2s was also high in some cases. NewHybrids models revealed that 89.8% (n = 59) of the S. compressus samples were F1 hybrids between either S. perrico × S. ghobban or S. perrico × S. rubroviolaceus. Similarly, the most recently diverged S. ghobban and S. rubroviolaceus were hybridizing in small numbers, with half of the admixed individuals assigned to F1 hybrids and the remainder likely > F1 hybrids. We observed strong mito-nuclear discordance in all hybrid pairs. Migrate models favored gene flow between S. perrico and S. ghobban, but not other species pairs. CONCLUSIONS: Mating between divergent species is giving rise to a region-wide, multispecies hybrid complex, characterized by a high frequency of parental and F1 genotypes but a low frequency of > F1 hybrids. Trimodal structure, and evidence for fertility of both male and female F1 hybrids, suggest that fitness declines sharply in later generation hybrids. In contrast, the hybrid population of the two more recently diverged species had similar frequencies of F1 and > F1 hybrids, suggesting accelerating post-mating incompatibility with time. Mitochondrial genotypes in hybrids suggest that indiscriminate mating by male S. perrico is driving pre-zygotic breakdown, which may reflect isolation of this endemic species for millions of years resulting in weak selection for conspecific mate recognition. Despite overlapping habitat use and high rates of hybridization, species boundaries are maintained by a combination of pre- and post-mating processes in this complex

    Larval dispersal and fishing pressure influence recruitment in a coral reef fishery

    Get PDF
    Understanding larval connectivity patterns in exploited fishes is a fundamental prerequisite for developing effective management strategies and assessing the vulnerability of a fishery to recruitment overfishing and localised extinction. To date, however, researchers have not considered how regional variations in fishing pressure also influence recruitment. We used genetic parentage analyses and modelling to infer the dispersal patterns of bumphead parrotfish Bolbometopon muricatum larvae in the Kia fishing grounds, Isabel Province, Solomon Islands. We then extrapolated our Kia dispersal model to a regional scale by mapping the available nursery and adult habitat for B. muricatum in six regions in the western Solomon Islands, and estimated the relative abundance of adult B. muricatum populations in each of these regions based on available adult habitat and historical and current fishing pressure. Parentage analysis identified 67 juveniles that were the offspring of parents sampled in the Kia fishing grounds. A fitted larval dispersal kernel predicted that 50% of larvae settled within 30 km of their parents, and 95% settled within 85 km of their parents. After accounting for unsampled adults, our model predicted that 34% of recruitment to the Kia fishery was spawned locally. Extrapolating the spatial resolution of the model revealed that a high proportion of the larvae recruiting into the Kia fishing grounds came from nearby regions that had abundant adult populations. Other islands in the archipelago provided few recruits to the Kia fishing grounds, reflecting the greater distances to these islands and lower adult abundances in some regions. Synthesis and applications. This study shows how recruitment into a coral reef fishery is influenced by larval dispersal patterns and regional variations in historical fishing pressure. The scales of larval connectivity observed for bumphead parrotfish indicate that recruitment overfishing is unlikely if there are lightly exploited reefs up to 85 km away from a heavily fished region, and that small (<1 km2) marine-protected areas (MPAs) are insufficient to protect this species. We recommend greater efforts to understand the interactions between larval dispersal and gradients of fishing pressure, as this will enable the development of tailored fisheries management strategies

    Comparative phylogeography of reef fishes from the Gulf of Aden to the Arabian Sea reveals two cryptic lineages

    Get PDF
    Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling at the eastern end (southern Oman). We tested for barriers to dispersal across this region (including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA surveys of 11 reef fishes. Study species included seven taxa from six families with broad distributions across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine species showed no significant genetic partitions, indicating connectivity among contrasting environments spread across 2000 km. One butterflyfish (Chaetodon melannotus) and a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, respectively, possibly indicating cryptic species within these broadly distributed taxa. These genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as evolutionary incubators for coral reef organisms. © 2017 Springer-Verlag Berlin HeidelbergTh

    Spawning Mode and Reproductive Output of the Tropical CephalopodIdiosepius pygmaeus

    No full text
    Reproductive biology of the tropical sepioid cephalopod Idiosepius pygmaeus was investigated in wild specimens and in individuals maintained in aquaria through the adult life span. This species produced multiple egg batches over 80% of the observable adult weight range, indicating a coordination of reproductive and somatic growth. Reproductive output was consistent within, but variable between, individuals. Oocyte synthesis and maturation occur continuously after sexual maturation has been reached. Senescence and death are not related to an exhaustion of reproductive potential. On average, captive female I. pygmaeus with access to unlimited food produced 640 eggs in 11 batches over 18 d. When reproductive output was expressed as a ratio of dry female body weight, on average, specimens had incorporated five times their body weight into eggs and egg coatings. Under food stress, captive specimens laid fewer eggs but maintained egg size and periodicity of egg laying. Food stress had no effect on either laying duration or weight at death. This study provides further evidence that terminal spawning modes are not ubiquitous amongst cephalopods

    Age-based studies

    No full text
    [Extract] T here exists a vast literature on the age and growth\ud of fishes (Hilborne and Waiters, 1992; Secor et al., 1995a). Much of this reflects a century of research on the major stocks of exploited fishes, primarily those of temperate water, open-ocean, and deep-water habitats. In contrast, there is relatively little age-based demographic information available on coral reef fishes. There are a number of reasons for advocating a more comprehensive understanding of the age-based demography of coral reef fishes. The primary reason relates to\ud the increasing exploitation of reef fish stocks by both artisanal\ud and commercial fisheries, some of the latter (e.g., the live fish trade) being internationally based (Jennings and Polunin, 1996; Birkeland, 1997a; Lee and Sadovy, 1998). Demographic information will provide a better basis for reef fish conservation and management.\ud \ud Assembling age-based data for coral reef fishes will be a complex task. Most species have wide distributions spanning significant geographic gradients (Myers, 1999). Within localized areas a species will occur in a variety of habitats. As poikilotherms, fish are sensitive to prevailing environmental conditions (Atkinson, 1994). Growth and life history patterns of reef fishes can be expected to vary, at geographic, latitudinal, and habitat scales. An emerging picture of the demography of reef fishes suggests three things. Many taxa will be relatively long-lived (Munro and Polunin, 1997), with life-spans exceeding 15 years; they will have highly distinctive patterns of growth, and age-based demographic features will show a strong phylogenetic structure (Hart and Russ, 1996; Newman et al., 1996; Choat and Axe, 1996; Choat et al., 1996). Most importantly, it is becoming evident that size and age in many taxa of reef fishes may be decoupled (Hart and Russ, 1996;\ud Newman et al., 1996, 2000b). Although reef fishes occur in a wide range of sizes, large size may not correlate with longevity. In addition, many species of coral reef fishes may have complex sexual ontogenies, which can in turn influence size and sex-specific growth patterns (Sadovy and Shapiro, 1987; Choat et al., 1996)

    Growth in Tropical Cephalopods: An Analysis Based on Statolith Microstructure

    No full text
    Validated size-at-age data are presented for two tropical squid species (Loliolus noctiluca and Loligo chinensis) and a sepioid (Idiosepius pygmaeus). Estimates of age were obtained from daily increments in the statolith. All species reached adult size in less than 200 d. For each species, growth in mantle length was linear over the sizes sampled. In L. chinensis, growth was fastest during December–January (summer), with males showing faster growth rates than females. For I. pygmaeus, females generally had a higher growth rate than males. The slowest growth rates for both sexes occurred in the August–September (winter) period. The size-at-age data indicated rapid linear or exponential growth and a short life span of less than 1 yr. In contrast, growth curves generated from analysis of length frequency data (ELEFAN software package) suggested an asymptotic growth curve and ages in excess of 3 yr, and such analyses therefore appear inappropriate. The results of this study and a review of the literature revealed that rapid growth and short life span is the norm for pelagic cephalopods, with tropical species growing considerably faster than their temperate counterparts

    Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish

    No full text
    Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum
    corecore