1,474 research outputs found
On the physics behind the form factor ratio
We point out that there exist two natural definitions of the nucleon
magnetization densities : the density introduced in Kelly's
phenomenological analysis and theoretically more standard one . We
can derive an explicit analytical relation between them, although Kelly's
density is more useful to disentangle the physical origin of the different
dependence of the Sachs electric and magnetic form factors of the
nucleon. We evaluate both of and as well as the
charge density of the proton within the framework of the chiral
quark soliton model, to find a noticeable qualitative difference between
and , which is just consistent with Kelly's result
obtained from the empirical information on the Sachs electric and magnetic form
factors of the proton.Comment: 12 pages, 5 figures. version to appear in J. Phys. G.: Nucl. Part.
Phy
Field dynamics and kink-antikink production in rapidly expanding systems
Field dynamics in a rapidly expanding system is investigated by transforming
from space-time to the rapidity - proper-time frame. The proper-time dependence
of different contributions to the total energy is established. For systems
characterized by a finite momentum cut-off, a freeze-out time can be defined
after which the field propagation in rapidity space ends and the system decays
into decoupled solitons, antisolitons and local vacuum fluctuations. Numerical
simulations of field evolutions on a lattice for the (1+1)-dimensional
model illustrate the general results and show that the freeze-out time and
average multiplicities of kinks (plus antikinks) produced in this 'phase
transition' can be obtained from simple averages over the initial ensemble of
field configurations. An extension to explicitly include additional dissipation
is discussed. The validity of an adiabatic approximation for the case of an
overdamped system is investigated. The (3+1)-dimensional generalization may
serve as model for baryon-antibaryon production after heavy-ion collisions.Comment: 18 pages, 7 figures. Two references added. New subsection III.E
added. Final version accepted for publication in PR
ENERGY TRANSFER IN TRIMERIC C-PHYCOCYANIN STUDIED BY PICOSECOND FLUORESCENCE KINETICS
The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fast decay components are found to turn into a rise term. This finding further corroborates the concept of intramolecular energy transfer. Previous reports on the conformational heterogeneity of the chromophores and/or proteins in C-phycocyanin are confirmed. Our data also provide indications for the importance of the uncoloured linker peptides for this heterogeneity
Octave Spanning Frequency Comb on a Chip
Optical frequency combs have revolutionized the field of frequency metrology
within the last decade and have become enabling tools for atomic clocks, gas
sensing and astrophysical spectrometer calibration. The rapidly increasing
number of applications has heightened interest in more compact comb generators.
Optical microresonator based comb generators bear promise in this regard.
Critical to their future use as 'frequency markers', is however the absolute
frequency stabilization of the optical comb spectrum. A powerful technique for
this stabilization is self-referencing, which requires a spectrum that spans a
full octave, i.e. a factor of two in frequency. In the case of mode locked
lasers, overcoming the limited bandwidth has become possible only with the
advent of photonic crystal fibres for supercontinuum generation. Here, we
report for the first time the generation of an octave-spanning frequency comb
directly from a toroidal microresonator on a silicon chip. The comb spectrum
covers the wavelength range from 990 nm to 2170 nm and is retrieved from a
continuous wave laser interacting with the modes of an ultra high Q
microresonator, without relying on external broadening. Full tunability of the
generated frequency comb over a bandwidth exceeding an entire free spectral
range is demonstrated. This allows positioning of a frequency comb mode to any
desired frequency within the comb bandwidth. The ability to derive octave
spanning spectra from microresonator comb generators represents a key step
towards achieving a radio-frequency to optical link on a chip, which could
unify the fields of metrology with micro- and nano-photonics and enable
entirely new devices that bring frequency metrology into a chip scale setting
for compact applications such as space based optical clocks
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Optical frequency comb generation from a monolithic microresonator
Optical frequency combs provide equidistant frequency markers in the
infrared, visible and ultra-violet and can link an unknown optical frequency to
a radio or microwave frequency reference. Since their inception frequency combs
have triggered major advances in optical frequency metrology and precision
measurements and in applications such as broadband laser-based gas sensing8 and
molecular fingerprinting. Early work generated frequency combs by intra-cavity
phase modulation while to date frequency combs are generated utilizing the
comb-like mode structure of mode-locked lasers, whose repetition rate and
carrier envelope phase can be stabilized. Here, we report an entirely novel
approach in which equally spaced frequency markers are generated from a
continuous wave (CW) pump laser of a known frequency interacting with the modes
of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The
intrinsically broadband nature of parametric gain enables the generation of
discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without
relying on any external spectral broadening. Optical-heterodyne-based
measurements reveal that cascaded parametric interactions give rise to an
optical frequency comb, overcoming passive cavity dispersion. The uniformity of
the mode spacing has been verified to within a relative experimental precision
of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio
Cool Stars and Space Weather
Stellar flares, winds and coronal mass ejections form the space weather. They
are signatures of the magnetic activity of cool stars and, since activity
varies with age, mass and rotation, the space weather that extra-solar planets
experience can be very different from the one encountered by the solar system
planets. How do stellar activity and magnetism influence the space weather of
exoplanets orbiting main-sequence stars? How do the environments surrounding
exoplanets differ from those around the planets in our own solar system? How
can the detailed knowledge acquired by the solar system community be applied in
exoplanetary systems? How does space weather affect habitability? These were
questions that were addressed in the splinter session "Cool stars and Space
Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In
this paper, we present a summary of the contributions made to this session.Comment: Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, Eds G. van Belle & H. Harris, 13 pages, 1 figur
FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN
Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides
DCC Dynamics in (2+1)D-O(3) model
The dynamics of symmetry-breaking after a quench is numerically simulated on
a lattice for the (2+1)-dimensional O(3) model. In addition to the standard
sigma-model with temperature-dependent Phi^4-potential the energy functional
includes a four-derivative current-current coupling to stabilize the size of
the emerging extended topological textures. The total winding number can be
conserved by constraint. As a model for the chiral phase transition during the
cooling phase after a hadronic collision this allows to investigate the
interference of 'baryon-antibaryon' production with the developing disoriented
aligned domains. The growth of angular correlations, condensate, average
orientation is studied in dependence of texture size, quench rate, symmetry
breaking. The classical dissipative dynamics determines the rate of energy
emitted from the relaxing source for each component of the 3-vector field which
provides a possible signature for domains of Disoriented Chiral Condensate. We
find that the 'pions' are emitted in two distinct pulses; for sufficiently
small lattice size the second one carries the DCC signal, but it is strongly
suppressed as compared to simultaneous 'sigma'-meson emission. We compare the
resulting anomalies in the distributions of DCC pions with probabilities
derived within the commonly used coherent state formalism.Comment: 27 pages, 17 figures; several minor insertions in the text; two
references adde
- …