3,127 research outputs found

    Electrochemical milling removes burrs and solder from tubing ends

    Get PDF
    Electrochemical milling removes burrs and solder from the cut ends of stainless steel capillary tubing. An electrolyte consisting primarily of a solution of sulfuric and phosphoric acids is used

    The two-and three-point correlation functions of the polarized five-year WMAP sky maps

    Full text link
    We present the two- and three-point real space correlation functions of the five-year WMAP sky maps, and compare the observed functions to simulated LCDM concordance model ensembles. In agreement with previously published results, we find that the temperature correlation functions are consistent with expectations. However, the pure polarization correlation functions are acceptable only for the 33GHz band map; the 41, 61, and 94 GHz band correlation functions all exhibit significant large-scale excess structures. Further, these excess structures very closely match the correlation functions of the two (synchrotron and dust) foreground templates used to correct the WMAP data for galactic contamination, with a cross-correlation statistically significant at the 2sigma-3sigma confidence level. The correlation is slightly stronger with respect to the thermal dust template than with the synchrotron template.Comment: 10 pages, 5 figures, published in ApJ. v2: New title, minor changes to appendix, and fixed some typos. v3: Matches version published in Ap

    State v. Cameron: Making the Alford Plea an Effective Tool in Sex Offense Cases

    Get PDF
    State v. Cameron: Making the Alford plea an effective tool in sex offense case

    CMB likelihood approximation by a Gaussianized Blackwell-Rao estimator

    Full text link
    We introduce a new CMB temperature likelihood approximation called the Gaussianized Blackwell-Rao (GBR) estimator. This estimator is derived by transforming the observed marginal power spectrum distributions obtained by the CMB Gibbs sampler into standard univariate Gaussians, and then approximate their joint transformed distribution by a multivariate Gaussian. The method is exact for full-sky coverage and uniform noise, and an excellent approximation for sky cuts and scanning patterns relevant for modern satellite experiments such as WMAP and Planck. A single evaluation of this estimator between l=2 and 200 takes ~0.2 CPU milliseconds, while for comparison, a single pixel space likelihood evaluation between l=2 and 30 for a map with ~2500 pixels requires ~20 seconds. We apply this tool to the 5-year WMAP temperature data, and re-estimate the angular temperature power spectrum, CC_{\ell}, and likelihood, L(C_l), for l<=200, and derive new cosmological parameters for the standard six-parameter LambdaCDM model. Our spectrum is in excellent agreement with the official WMAP spectrum, but we find slight differences in the derived cosmological parameters. Most importantly, the spectral index of scalar perturbations is n_s=0.973 +/- 0.014, 1.9 sigma away from unity and 0.6 sigma higher than the official WMAP result, n_s = 0.965 +/- 0.014. This suggests that an exact likelihood treatment is required to higher l's than previously believed, reinforcing and extending our conclusions from the 3-year WMAP analysis. In that case, we found that the sub-optimal likelihood approximation adopted between l=12 and 30 by the WMAP team biased n_s low by 0.4 sigma, while here we find that the same approximation between l=30 and 200 introduces a bias of 0.6 sigma in n_s.Comment: 10 pages, 7 figures, submitted to Ap

    Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena

    Full text link
    The remarkable detection of a spatial variation in the fine-structure constant, alpha, from quasar absorption systems must be independently confirmed by complementary searches. In this letter, we discuss how terrestrial measurements of time-variation of the fundamental constants in the laboratory, meteorite data, and analysis of the Oklo nuclear reactor can be used to corroborate the spatial variation seen by astronomers. Furthermore, we show that spatial variation of the fundamental constants may be observable as spatial anisotropy in the cosmic microwave background, the accelerated expansion (dark energy), and large-scale structure of the Universe.Comment: 4 page

    The Temperature of the Cosmic Microwave Background

    Full text link
    The FIRAS data are independently recalibrated using the WMAP data to obtain a CMB temperature of 2.7260 +/- 0.0013. Measurements of the temperature of the cosmic microwave background are reviewed. The determination from the measurements from the literature is cosmic microwave background temperature of 2.72548 +/- 0.00057 K.Comment: 6 Pages 3 figure
    corecore