87 research outputs found

    Single Gate P-N Junctions in Graphene-Ferroelectric Devices

    Full text link
    Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr0.2_{0.2}Ti0.8_{0.8}O3_3 substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activate and deactivate the doping, yielding an `on-demand' p-n junction in graphene controlled by a single, universal backgate

    Population of neutron unbound states via two-proton knockout reactions

    Full text link
    The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys. Changing Facets of Nuclear Structure, May 20-34, 200

    Generation and division of excitation energy in heavy-ion collisions studied by measuring charged-particle survival fractions

    Get PDF
    Charged-particle survival fractions of primary projectile-like fragments from the 40Ar + 197Au reaction at 450 MeV were measured by using a large array of 32 phoswich detectors operating in coincidence with a detector of projectile-like fragments. Differential survival fractions of the primary pickup and stripping reaction products indicate a dependence of the average excitation energy generated in the primary fragments on the direction of the mass transfer

    Energy distributions from three-body decaying many-body resonances

    Get PDF
    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0+0^{+} and 1+1^{+}-resonances in 12^{12}C populated in β\beta-decays. These states are dominated by sequential, through the 8^{8}Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ``dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wavefunctions are accurately computed.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letter

    Exploring Neutron-Rich Oxygen Isotopes with MoNA

    Full text link
    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.Comment: 6 pages, 4 Figures, submitted to Proc. Int. Conf. on Proton Emitting Nuclei and Related Topics, PROCON0

    Population of 13Be in a Nucleon Exchange Reaction

    Full text link
    The neutron-unbound nucleus 13Be was populated with a nucleon-exchange reaction from a 71 MeV/u secondary 13B beam. The decay energy spectrum was reconstructed using invariant mass spectroscopy based on 12Be fragments in coincidence with neutrons. The data could be described with an s-wave resonance at E = 0.73(9) MeV with a width of Gamma = 1.98(34) MeV and a d-wave resonance at E = 2.56(13) MeV with a width of Gamma = 2.29(73) MeV. The observed spectral shape is consistent with previous one-proton removal reaction measurements from 14B.Comment: Published in Phys. Rev.

    Structure and Decay Correlations of Two-Neutron Systems Beyond the Dripline

    Full text link
    The two-neutron unbound systems of 16Be, 13Li, 10He, and 26O have been measured using the Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet setup. The correlations of the 3-body decay for the 16Be and 13Li were extracted and demonstrated a strong correlated enhancement between the two neutrons. The measurement of the 10He ground state resonance from a 14Be(−2p2n) reaction provided insight into previous predictions that wavefunction of the entrance channel, projectile, can influence the observed decay energy spectrum for the unbound system. Lastly, the decay-in-target (DiT) technique was utilized to extract the lifetime of the 26O ground state. The measured lifetime of 4.5+1.1 −1.5 (stat.)±3(sys.) ps provides the first indication of two-neutron radioactivity
    corecore