27 research outputs found

    Adaptive changes in sexual signalling in response to urbanization

    Get PDF
    Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tĂșngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures

    The seafloor from a trait perspective:A comprehensive life history dataset of soft sediment macrozoobenthos

    Get PDF
    Biological trait analysis (BTA) is a valuable tool for evaluating changes in community diversity and its link to ecosystem processes as well as environmental and anthropogenic perturbations. Trait-based analytical techniques like BTA rely on standardised datasets of species traits. However, there are currently only a limited number of datasets available for marine macrobenthos that contain trait data across multiple taxonomic groups. Here, we present an open-access dataset of 16 traits for 235 macrozoobenthic species recorded throughout multiple sampling campaigns of the Dutch Wadden Sea; a dynamic soft bottom system where humans have long played a substantial role in shaping the coastal environment. The trait categories included in this dataset cover a variety of life history strategies that are tightly linked to ecosystem functioning and the resilience of communities to (anthropogenic) perturbations and can advance our understanding of environmental changes and human impacts on the functioning of soft bottom systems

    Growth requirements of Rhizoctonia repens M 32

    Full text link
    Rhizoctonia repens M 32, a mycorrhizal isolate from Orchis militaris requires both a carbohydrate (glucose or sucrose) and an amino acid (aspartic acid, glycine, serine, or glutamic acid) for growth. The fungus does not require an exogenous supply of vitamins in vitro. © 1975 Dr. W. Junk bv - Publishers

    Morfologische verschillen tussen de belangrijkste Heterodera-soorten in Nederland

    No full text

    Where land meets sea: Intertidal areas as key-habitats for sharks and rays

    Get PDF
    Abstract Intertidal habitats (i.e. marine habitats that are (partially) exposed during low tide) have traditionally been studied from a shorebird-centred perspective. We show that these habitats are accessible and important to marine predators such as elasmobranchs (i.e. sharks and rays). Our synthesis shows that at least 43 shark and 45 ray species, of which 54.5 use intertidal habitats. Elasmobranchs use intertidal habitats mostly for feeding and as refugia, but also for parturition and thermoregulation. However, the motivation of intertidal habitat use remains unclear due to limitations to observe elasmobranch behaviour in these dynamic habitats. We argue that elasmobranch predators can play an important role in intertidal food webs by feeding on shared resources during high tide (i.e. ‘high-tide predators’), which are accessible and also consumed by terrestrial or avian predators during low tide (i.e. ‘low-tide predators’). In addition, elasmobranchs are able to change the bio-geomorphology of intertidal habitats by increasing habitat heterogeneity due to feeding activities and may also alter resource availability for other consumers. We discuss how the ecological role of elasmobranchs in intertidal habitats is being affected by the continued overexploitation of these species, and conversely, how the global loss of intertidal areas poses an additional threat to an already vulnerable taxonomic group. We conclude that studies on intertidal ecology should include both low-tide (e.g. shorebirds) and high-tide (e.g. elasmobranchs) predatory guilds and their ecological interactions. The global loss of elasmobranch predatory species and intertidal habitat provides additional compelling arguments for the conservation of these areas

    Data from: Adaptive changes in sexual signaling in response to urbanization

    Get PDF
    Urbanization can cause species to adjust their sexual displays, as the effectiveness of mating signals is impacted by environmental conditions. Despite many examples showing that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tĂșngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures

    Adaptive Changes in Sexual Signalling in Response to Urbanization

    Full text link
    Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tĂșngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures
    corecore