546 research outputs found

    Photoconductance of a submicron oxidized line in surface conductive single crystalline diamond

    Full text link
    We report on sub-bandgap optoelectronic phenomena of hydrogen-terminated diamond patterned with a submicron oxidized line. The line acts as an energy barrier for the two-dimensional hole gas located below the hydrogenated diamond surface. A photoconductive gain of the hole conductivity across the barrier is measured for sub-bandgap illumination. The findings are consistent with photogenerated electrons being trapped in defect levels within the barrier. We discuss the spatial and energetic characteristics of the optoelectronic phenomena, as well as possible photocurrent effects

    The neural network of saccadic foreknowledge.

    Get PDF
    Foreknowledge about upcoming events may be exploited to optimize behavioural responses. In a previous work, using an eye movement paradigm, we showed that different types of partial foreknowledge have different effects on saccadic efficiency. In the current study, we investigated the neural circuitry involved in processing of partial foreknowledge using functional magnetic resonance imaging. Fourteen subjects performed a mixed antisaccade, prosaccade paradigm with blocks of no foreknowledge, complete foreknowledge or partial foreknowledge about stimulus location, response direction or task. We found that saccadic foreknowledge is processed primarily within the well-known oculomotor network for saccades and antisaccades. Moreover, we found a consistent decrease in BOLD activity in the primary and secondary visual cortex in all foreknowledge conditions compared to the no-foreknowledge conditions. Furthermore we found that the different types of partial foreknowledge are processed in distinct brain areas: response foreknowledge is processed in the frontal eye field, while stimulus foreknowledge is processed in the frontal and parietal eye field. Task foreknowledge, however, revealed no positive BOLD correlate. Our results show different patterns of engagement in the saccade-related neural network depending upon precisely what type of information is known ahead

    Mitigation strategies against radiation-induced background for space astronomy missions

    Get PDF
    The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission is a major upcoming space-based X-ray observatory due to be launched in 2028 by ESA, with the purpose of mapping the early universe and observing black holes. Background radiation is expected to constitute a large fraction of the total system noise in the Wide Field Imager (WFI) instrument on ATHENA, and designing an effective system to reduce the background radiation impacting the WFI will be crucial for maximising its sensitivity. Significant background sources are expected to include high energy protons, X-ray fluorescence lines, `knock-on' electrons and Compton electrons. Due to the variety of the different background sources, multiple shielding methods may be required to achieve maximum sensitivity in the WFI. These techniques may also be of great interest for use in future space-based X-ray experiments. Simulations have been developed to model the effect of a graded-Z shield on the X-ray fluorescence background. In addition the effect of a 90nm optical blocking filter on the secondary electron background has been investigated and shown to modify the requirements of any secondary electron shielding that is to be used

    Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System

    Full text link
    An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.Comment: Proceedings of FNDA 201

    Towards a new philological edition of Vincent Ferrer’s Lenten sermons (València, 1413): a specimen

    Get PDF
    L’article presenta una nova edició fi lològica, actualment en preparació, dels cinquanta-tres sermons de quaresma predicats l’any 1413 a València per Vicent Ferrer (València, Arxiu de la Catedral, ms. 273). Després d’una breu introducció en què s’aborden les raons que justifi quen una nova edició d’aquest sermonari, s’ofereix una mostra del text crític, acompanyat d’un aparat textual i de notes explicatives.This paper showcases an ongoing new philological edition of Vincent Ferrer’s fi fty-three Lenten sermons preached in València in 1413 (València, Cathedral Archive, ms. 273). A short introduction that gives the rationale for a new edition of this sermonary is followed by a sample of the critical text, supplemented by a textual apparatus and explanatory notes

    Integrated Detector Control and Calibration Processing at the European XFEL

    Full text link
    The European X-ray Free Electron Laser is a high-intensity X-ray light source currently being constructed in the area of Hamburg, that will provide spatially coherent X-rays in the energy range between 0.25 keV0.25\,\mathrm{keV} and 25 keV25\,\mathrm{keV}. The machine will deliver 10 trains/s10\,\mathrm{trains/s}, consisting of up to 2700 pulses2700\,\mathrm{pulses}, with a 4.5 MHz4.5\,\mathrm{MHz} repetition rate. The LPD, DSSC and AGIPD detectors are being developed to provide high dynamic-range Mpixel imaging capabilities at the mentioned repetition rates. A consequence of these detector characteristics is that they generate raw data volumes of up to 15 Gbyte/s15\,\mathrm{Gbyte/s}. In addition the detector's on-sensor memory-cell and multi-/non-linear gain architectures pose unique challenges in data correction and calibration, requiring online access to operating conditions and control settings. We present how these challenges are addressed within XFEL's control and analysis framework Karabo, which integrates access to hardware conditions, acquisition settings (also using macros) and distributed computing. Implementation of control and calibration software is mainly in Python, using self-optimizing (py) CUDA code, numpy and iPython parallels to achieve near-real time performance for calibration application.Comment: Proceeding ICALEPS 201
    • …
    corecore