283 research outputs found

    The BCS gap equation for spin-polarized fermions

    Full text link
    We study the BCS gap equation for a Fermi gas with unequal population of spin-up and spin-down states. For cosh(δμ/T)2\cosh(\delta_\mu/T) \leq 2, with TT the temperature and δμ\delta_\mu the chemical potential difference, the question of existence of non-trivial solutions can be reduced to spectral properties of a linear operator, similar to the unpolarized case studied previously in \cite{FHNS,HHSS,HS}. For cosh(δμ/T)>2\cosh(\delta_\mu/T) > 2 the phase diagram is more complicated, however. We derive upper and lower bounds for the critical temperature, and study their behavior in the small coupling limit.Comment: 23 pages, 1 figur

    Low Density Limit of BCS Theory and Bose-Einstein Condensation of Fermion Pairs

    Full text link
    We consider the low density limit of a Fermi gas in the BCS approximation. We show that if the interaction potential allows for a two-particle bound state, the system at zero temperature is well approximated by the Gross-Pitaevskii functional, describing a Bose-Einstein condensate of fermion pairs.Comment: LaTeX2e, 17 page

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    Gradient corrections for semiclassical theories of atoms in strong magnetic fields

    Full text link
    This paper is divided into two parts. In the first one the von Weizs\"acker term is introduced to the Magnetic TF theory and the resulting MTFW functional is mathematically analyzed. In particular, it is shown that the von Weizs\"acker term produces the Scott correction up to magnetic fields of order BZ2B \ll Z^2, in accordance with a result of V. Ivrii on the quantum mechanical ground state energy. The second part is dedicated to gradient corrections for semiclassical theories of atoms restricted to electrons in the lowest Landau band. We consider modifications of the Thomas-Fermi theory for strong magnetic fields (STF), i.e. for BZ3B \ll Z^3. The main modification consists in replacing the integration over the variables perpendicular to the field by an expansion in angular momentum eigenfunctions in the lowest Landau band. This leads to a functional (DSTF) depending on a sequence of one-dimensional densities. For a one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a negative sign and we discuss the corresponding modification of the DSTF functional.Comment: Latex2e, 36 page

    Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields

    Full text link
    Using the Pauli-Villars regularization and arguments from convex analysis, we construct solutions to the classical time-independent Maxwell equations in Dirac's vacuum, in the presence of small external electromagnetic sources. The vacuum is not an empty space, but rather a quantum fluctuating medium which behaves as a nonlinear polarizable material. Its behavior is described by a Dirac equation involving infinitely many particles. The quantum corrections to the usual Maxwell equations are nonlinear and nonlocal. Even if photons are described by a purely classical electromagnetic field, the resulting vacuum polarization coincides to first order with that of full Quantum Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi

    On Blowup for time-dependent generalized Hartree-Fock equations

    Full text link
    We prove finite-time blowup for spherically symmetric and negative energy solutions of Hartree-Fock and Hartree-Fock-Bogoliubov type equations, which describe the evolution of attractive fermionic systems (e. g. white dwarfs). Our main results are twofold: First, we extend the recent blowup result of [Hainzl and Schlein, Comm. Math. Phys. \textbf{287} (2009), 705--714] to Hartree-Fock equations with infinite rank solutions and a general class of Newtonian type interactions. Second, we show the existence of finite-time blowup for spherically symmetric solutions of a Hartree-Fock-Bogoliubov model, where an angular momentum cutoff is introduced. We also explain the key difficulties encountered in the full Hartree-Fock-Bogoliubov theory.Comment: 24 page

    The External Field Dependence of the BCS Critical Temperature

    Get PDF
    We consider the Bardeen–Cooper–Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg–Landau equation

    Scale Dependence of the Retarded van der Waals Potential

    Get PDF
    We study the ground state energy for a system of two hydrogen atoms coupled to the quantized Maxwell field in the limit α0\alpha \to 0 together with the relative distance between the atoms increasing as αγR\alpha^{-\gamma} R, γ>0\gamma > 0. In particular we determine explicitly the crossover function from the R6R^{-6} van der Waals potential to the R7R^{-7} retarded van der Waals potential, which takes place at scale α2R\alpha^{-2} R.Comment: 19 page
    corecore