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Scale dependence of the retarded van der Waals potential
Tadahiro Miyao1,a) and Herbert Spohn2,b)

1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
2Zentrum Mathematik, Technische Universität München, D-85747 Garching, Germany

(Received 4 May 2012; accepted 30 July 2012; published online 29 August 2012)

We study the ground state energy for a system of two hydrogen atoms coupled to
the quantized Maxwell field in the limit α → 0 together with the relative distance
between the atoms increasing as α − γ R, γ > 0. In particular we determine explicitly
the crossover function from the R− 6 van der Waals potential to the R− 7 retarded van
der Waals potential, which takes place at scale α − 2R. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4745911]

We dedicate our contribution to Elliott Lieb with greatest admiration and deep gratitude for what
he has taught us, and whole generations, about quantum mechanics and statistical physics.

I. INTRODUCTION

In a now very famous contribution, Casimir and Polder1 investigate the ground state energy,
E(R), of a system of two hydrogen atoms for which the two immobile nuclei are separated by a
distance R and the two spinless electrons are coupled through the quantized Maxwell field according
to non-relativistic QED. In the approximation where the quantum fluctuations of the Maxwell
field are ignored, only the electrostatic Coulomb interaction remains. In this case E(R) − E(∞)
≈ − R− 6, the ubiquitous van der Waals potential, which has been discovered on thermodynamic
grounds way before the advent of quantum mechanics. The R− 6 behavior is well understood quantum
mechanically2 and has been proved in great generality by Lieb and Thirring.3 Casimir and Polder
use fourth order perturbation theory to argue that because of retardation effects the true asymptotic
behavior is in fact E(R) − E(∞) ≈ − R− 7 for large R. Their argument has been reworked many
times and extended to arbitrary atoms and molecules, see for example.4–9 It is generally agreed that
for two neutral molecules A, B it holds

E(R) − E(∞) ∼= − 23

4π
αAαB R−7 (1.1)

for large R. Here αA, αB, are the electric dipole moments of molecule A, B. The numerical prefactor
is universal (23/4π is the value in Gaussian units).

Equation (1.1) is based on perturbation theory and thus holds only for small coupling. With
improved experimental techniques, there has been a renewed interest to explore a wider regime. One
still finds the R− 7 power law, but the prefactor is now a bilinear form in the electric and magnetic
dipole moments. To be consistent, in principle, these moments have to be computed for the single
molecule in isolation but still coupled to its own quantized radiation field. All atomic/molecular
properties appear through the electric and magnetic dipole moments. As in (1.1), the remaining
coefficients are universal. In particular the coefficient 23/4π for electric dipole-electric dipole con-
tribution persists. To mention only the most recent work: in Refs. 11 and 12 the retarded van der
Waals potential is computed in the framework of macroscopic QED. The approach in Ref. 13 is
based on the standard non-relativistic QED Hamiltonian, but uses the representation in terms of a
functional integral. Conceptually, this has the advantage that E(∞) is subtracted without error and
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that 1/R turns into a small parameter explicitly showing up in the action. Thus 1/R can be used as an
expansion parameter, which is more physical than the conventional coupling strength to the Maxwell
field.

In the framework of non-relativistic QED the existence of a ground state, for arbitrary R and
coupling strength, has been established in the break through contribution of Griesemer, Lieb, and
Loss.10, 14 To determine the leading, large R asymptotics of E(R) seem to be a difficult problem, even
for small, but fixed, coupling. In view of this situation we develop here a novel approach somewhat
closer in spirit to the original Casimir-Polder considerations. As interaction strength we use the fine
structure constant α and regard the ground state energy, E(R) = Eα(R), as depending both on R
and α. We then study the limit of small coupling with an approximately adjusted scale of R, more
precisely we consider the limit

Eα(α−γ R) − Eα(∞) , γ ≥ 0, (1.2)

as α → 0. Depending on the value γ distinct features of Eα(R) will become visible. In particular,
we will find an explicit formula for the crossover from R− 6 to R− 7, which occurs at scale α − 2.

In Sec. 2 we define the Hamiltonians and provide an overview on the dependence on γ . There
are two special values. At γ = 1 one crosses from core dominated behavior to the − R− 6 van der
Waals and at γ = 2 one crosses from − R− 6 to − R− 7. The corresponding crossover function is
computed explicitly and seems to be novel. Sections III and IV provide proofs and point out open
problems.

II. HAMILTONIANS AND MAIN RESULTS

Let us first consider a single hydrogen atom with an infinitely heavy nucleus located at the ori-
gin. The nucleus has charge e, e > 0, the electron has charge − e. We will use units in which
� = 1, c = 1, and the bare mass of the electron m = 1. Then the fine-structure constant is
α = e2/4π . Let x, p be position and momentum of the spinless electron. Then the non-relativistic
QED Hamiltonian for this system reads

H1,α = 1
2 :

(
p − eA(x)

)2
: −e2Vϕ(x) + Hf . (2.1)

The electrons and the nuclei are assumed to have the same prescribed charge distribution ϕ with the
following properties: ϕ is normalized,

∫
dx ϕ(x) = 1, rotation invariant, ϕ(x) = ϕrad(|x|), and of rapid

decrease. Denoting Fourier transform by ϕ̂, the potential Vϕ is the smeared Coulomb potential

Vϕ(x) =
∫
R3

dk |ϕ̂(k)|2|k|−2e−ik·x . (2.2)

A(x) is the quantized vector potential and Hf is the field energy. These are defined through a two-
component Bose field a(k, λ), k ∈ R3, λ = 1, 2, with commutation relation

[a(k, λ), a(k ′, λ′)∗] = δλλ′δ(k − k ′). (2.3)

Explicitly

Hf =
∑
λ=1,2

∫
R3

dk ω(k)a(k, λ)∗a(k, λ) (2.4)

with dispersion relation

ω(k) = |k| (2.5)

and

A(x) =
∑
λ=1,2

∫
R3

dk ϕ̂(k)
1√

2ω(k)
ε(k, λ)

(
eik·x a(k, λ) + e−ik·x a(k, λ)∗

)

= A+(x) + A−(x) (2.6)
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with the standard dreibein ε(k, 1), ε(k, 2), k̂ = k/|k|. : · : denotes normal ordering, which will be of
use later on. Thus the Hilbert space for H is

H = L2(R3
x ) ⊗ F , (2.7)

where F is the bosonic Fock space over L2(R3) ⊗ C2. From the quantization of the classical system
of charges coupled to the Maxwell field it follows that for the smearing of A(x) and of Vϕ the same
charge distribution has to be used. We refer to Ref. 15 for details. The ground state energy of H1, α

is denoted by E1, α .
To investigate the van der Waals potential one considers two hydrogen atoms, one located at

0 and the other at r = (0, 0, R), R ≥ 0. It will be convenient to define the position of the second
electron relative to r. Then x1, x2 + r are positions and p1, p2 the momenta of the two electrons.
The two-electron Hamiltonian reads

HR = 1
2 :

(
p1 − eA(x1)

)2
: −e2Vϕ(x1) + 1

2 :
(

p2 − eA(x2 + r )
)2

: −e2Vϕ(x2)

+ Hf + e2VR(x1, x2) (2.8)

with the interaction potential

VR(x1, x2) = −Vϕ(x1 − r ) − Vϕ(x2 + r ) + Vϕ(r ) + Vϕ(r + x2 − x1)

=
∫
R3

dk |ϕ̂(k)|2eik·r |k|−2(1 − e−ik·x1 )(1 − eik·x2 ) . (2.9)

HR acts on the Hilbert space L2(R3
x1

) ⊗ L2(R3
x2

) ⊗ F. HR has a unique ground state with energy
Eα(R). It is known that limR→∞Eα(R) = 2E1, α .

We plan to study Eα(α − γ R) in the limit of small α and consider first the hydrogen atom. In the
limit α → 0 the Bohr radius is order α − 1 and the energy is order − α2. Hence it is convenient to
switch to atomic coordinates which amounts to the unitary transformation

U ∗a(k, λ)U = α−3a(α−2k, λ) , U ∗xU = α−1x , U ∗ pU = αp ,

U ∗x jU = α−1x j , U ∗ p jU = αp j , j = 1, 2 . (2.10)

Then

U ∗ H1,αU = α2
(

1
2 :

(
p −

√
4πα3/2 Aα(x)

)2
: −Vα(x) + Hf

)
(2.11)

with

Vα(x) = 4π

∫
R3

dk |ϕ̂(αk)|2|k|−2e−ik·x (2.12)

and

Aα(x) =
∑
λ=1,2

∫
R3

dk ϕ̂(α2k)
1√
2|k|ε(k, λ)

(
eiαk·x a(k, λ) + e−iαk·x a(k, λ)∗

)

= A+
α (x) + A−

α (x) . (2.13)

We note that

α3[A+
α (x), A−

α (x)] = α3
∫
R3

dk |ϕ̂(α2k)|2|k|−1 = O(α−1) . (2.14)

Thus normal ordering is introduced to subtract these more singular contributions.
Correspondingly, the atomic scale Hamiltonian for two hydrogen atoms separated by a distance

α − 1R reads

U ∗ Hα−1 RU =α2
(

1
2 :

(
p1 −

√
4πα3/2 Aα(x1)

)2
: + 1

2 :
(

p2 −
√

4πα3/2 Aα(x2 + r )
)2

:

− Vα(x1) − Vα(x2) + Vα,R(x1, x2) + Hf

)
. (2.15)
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2.1 The scale 0 ≤ γ ≤ 1
For γ = 1, instead of considering merely the ground state energy, a more complete picture

would be the strong convergence of resolvents. For the smeared Coulomb potentials it holds

lim
α→0

sup
x

|Vα(x) − |x |−1| = 0 , (2.16)

lim
α→0

sup
x1,x2

∣∣Vα,R(x1, x2)

−( − |x1 + r |−1 − |x2 + r |−1 + R−1 + |r + x2 − x1|−1)∣∣ = 0 . (2.17)

Thus the issue of strong resolvent convergence is reduced to the study of the free particle Hamiltonian

T1,α = 1
2 :

(
p −

√
4πα3/2 Aα(x)

)2
: +Hf (2.18)

and correspondingly for two free electrons, with Hamiltonian denoted by T2, α . Note that the norm
of the coupling function in (2.18) diverges as α − 1/2. Thus the limit α → 0 is singular. On the
other hand the recent estimate17 of the ground state energy E0

1,α of T1, α establishes that E0
1,α

= −a0 + a3α + O(α2). For us only the coefficient a0 is of interest, which is given by

a0 = (2π )2
〈
A+

1 (0) · A+
1 (0)
,

(
1
2 P2

f + Hf
)−1

A+
1 (0) · A+

1 (0)

〉
. (2.19)

Here 
 denotes the Fock vacuum and Pf is the field momentum,

Pf =
∑
λ=1,2

∫
R3

dk ka(k, λ)∗a(k, λ) . (2.20)

With this information one arrives at

Conjecture 2.1: In the sense of strong convergence of resolvents,

lim
α→0

T1,α = 1
2 p2 + Hf − a0 , (2.21)

lim
α→0

T2,α = 1
2 p2

1 + 1
2 p2

2 + Hf − 2a0 . (2.22)

To our surprise, this limit has apparently never been investigated. In Sec. 4 we provide some
arguments towards the validity of Conjecture 2.1. If it holds, then by (2.16) and (2.17) we conclude
that

lim
α→0

α−2U ∗ H1,αU = 1

2
p2 − 1

|x | + Hf − a0

= Hhy + Hf − a0 , (2.23)

and

lim
α→0

α−2U ∗ Hα−1 RU = 1

2
p2

1 + 1

2
p2

2 − |x1|−1 − |x2|−1 − |x1 − r |−1 − |x2 + r |−1

+R−1 + |r + x2 − x1|−1 + Hf − 2a0

= H2,R + Hf − 2a0 (2.24)

in the sense of strong resolvent convergence. Denoting the ground state energy of H2, R by E2, R, in
particular it holds

γ = 1 : lim
α→0

α−2 Eα(α−1 R) = E2,R − 2a0 . (2.25)

Note that

lim
R→0

(E2,R − R−1) = Ehe (2.26)

Downloaded 03 Dec 2012 to 133.87.26.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



095215-5 T. Miyao and H. Spohn J. Math. Phys. 53, 095215 (2012)

with Ehe the ground state of the helium atom, while

lim
R→∞

R6(E2,R − 2Ehy) = −aVW , (2.27)

where aVW is the strength of the van der Waals potential

aVW = 6
∫ ∞

0
dt

∣∣ 1
3

〈
ψ0, x · e−t(Hhy−Ehy)xψ0

〉∣∣2
(2.28)

with Hhyψ0 = Ehyψ0, Ehy = − 1/2. Thus we conclude that on the distance scale α − 1R the energy
α2E2, R describes the crossover to the − R− 6 potential.

For completeness we list the even smaller distance scales,

γ = 0 : Eα(R) ∼= αVα(R) + α2(Ehe − 2a0) , (2.29)

0 < γ < 1 : Eα(α−γ R) ∼= α1+γ R−1 + α2(Ehe − 2a0) . (2.30)

2.2 The scale γ ≥ 1
To go beyond the distance scale α − 1R is a more difficult problem and we have only partial

results. We expect that the range 1 < γ < 2 is dominated by the van der Waals potential, i.e.,

1 < γ < 2 : Eα(α−γ R) ∼= α6γ−4aVW R−6 + 2E1,α . (2.31)

The retardation of the van der Waals potential first appears at scale α − 2. More precisely

γ = 2 : Eα(α−2 R) ∼= −α8hco(R) + 2E1,α , (2.32)

where the crossover function hco is defined by

hco(R)

= π−1
∫ ∞

0
du

(
1
3

〈
ψ0, x · (Hhy − Ehy)

(
(Hhy − Ehy)2 + (u/2)2

)−1
xψ0

〉)2
e−Ru

×
{

2−3 R−2u4 + 2−1 R−3u3 + 5 · 2−1 R−4u2 + 6R−5u + 6R−6
}

. (2.33)

At small distances

hco(R) ∼= aVW R−6, as R → 0 , (2.34)

and at large distances

hco(R) ∼= aCP R−7, as R → ∞ . (2.35)

Here the strength of the retarded van der Waals potential is

aCP = 23

4π
(αhy)2 , αhy = 2

3

〈
ψhy, x · (Hhy − Ehy)−1xψhy

〉 = 9

2
. (2.36)

We conclude that at scale α − 2R the ground state energy crosses from the van der Waals potential to
the retarded one as specified by hco.

At even larger scales one expects the exact power low R− 7,

γ > 2 : Eα(α−γ R) ∼= −α7γ−6aCP R−7 + 2E1,α . (2.37)

The hydrogen atom ground state has been estimated up to O(α5 log α−1) (Ref. 18) based on a
method originally devised by Hainzl and Seiringer.19 It is rather natural to use similar methods for
the case of two hydrogen atoms. If more modestly we strive for a precision of order α3, then the
scale will be limited to α − 6/5, unless there is a more direct way to accomplish the subtraction. At
scale α − 2 the first term is order α8. There is no hope to control E1, α with such a precision and one
has to look for alternative schemes.
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III. THE γ = 2 CROSSOVER FUNCTION

Our main goal is to derive the crossover function of (2.33). The starting point is the functional
integral representation of Eα(R) − Eα(∞), as the logarithm of a partition function to be evaluated
in the limit of large “volume,” [−T, T] with T → ∞, see Ref. 13. In this paper we consider
only the second cumulant of the action, assuming that higher cumulants decay at least as R− 8 for
R → ∞. The functional integration is defined with respect to two independent ground state processes
for the Hamiltonian H of (2.1) and thus still includes the coupling to the radiation field. On the basis
of our conjecture, for small coupling we replace H by

α2
(
Hα + Hf − a0

)
, Hα = 1

2 p2 − Vα(x) . (3.1)

Denoting both approximations by [· · · ]cu we have

[Eα(R) − Eα(∞)]cu = −2(2πα)2
(
I2(R) + I3(R) + I4(R)

)
, (3.2)

where the coefficients are given in (39), respectively, (47), (52) of Ref. 13 with the understanding
that H is replaced by α2(Hα + Hf − a0). Equation (3.2) should be regarded as the definition of
the left-hand side. I2, I3, I4 are explicitly given integrals with two three-dimensional momentum
integrations and, respectively, 1, 2, 3 time integrations, compare with (3.3) below. I2 and I3 are
not displayed here. Required is an asymptotic analysis of the integrals I2, I3, and I4. In fact, in the
scalings of (2.31), (2.32), (2.37), the contribution of I2 and I3 vanish as α → 0. The details are
lengthy and will not be recorded here. In the following we focus only on the relevant contribution
I4.

For notational simplicity, we replace Hα − inf spec(Hα) by Hα in the remainder of this section.
Then the ground state ψα is defined through Hαψα = 0. Similarly, Hhy − Ehy is replaced by Hhy.
Hence Hhyψhy = 0. According to (52) of Ref. 13, I4(R) is defined by

I4(R) = α6
∫
R3

dt1dt2dt3
∑
λ1,λ2

∫
R6

dk1dk2|ϕ̂(α2k1)|2|ϕ̂(α2k2)|2ei(k1+k2)·rα2

× 1
4ω1ω2 e−ω1|t1+t2+t3|e−ω2|t3|

×〈
ψα, (ε1 · x)Hαe−ik1·xα H−2

α e−|t1|Hα e−ik2·xα Hα(ε2 · x)ψα

〉
×〈

ψα, (ε1 · x)Hαeik1·xα H−2
α e−|t2|Hα eik2·xα Hα(ε2 · x)ψα

〉
, (3.3)

where now the inner product is in L2(R3
x ). The asymptotics of integrals as (3.3) have been studied

before,23 but only in the dipole approximation, which amounts to setting α = 0 in the factors
exp (±kj · xα), j = 1, 2. The handling without dipole approximation is novel.

Proposition 3.1: Assume that the smearing function ϕ is radial, continuous, and of compact
support.
(i) Let 1 < γ < 2. Then

lim
α→0

α6−6γ (4π )−2 I4(α−γ R) = aVW R−6 . (3.4)

(ii) Let γ = 2. Then

lim
α→0

α−6 I4(α−2 R) = hco(R) . (3.5)

(iii) Let γ > 2. Then

lim
α→0

α8−7γ (4π )−2 I4(α−γ R) = 23

4π
(ahy)2 R−7 . (3.6)

Using (3.2) the proposition supports the claims of Sec. 2.

Proof: For better readability we subdivide our proof into several steps. But before we remark
that, within the current proof, compact support of ϕ is required.
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Step 1 (Rewriting): We scale k j � αγ−2k j and t3 � α2−γ t3. Then

I4(α−γ R)

= α7γ−8
∫
R3

dt1dt2dt3
∑
λ1,λ2

∫
R6

dk1dk2|ϕ̂(αγ k1)|2|ϕ̂(αγ k2)|2

×ei(k1+k2)·r 1
4ω1ω2 e−αγ−2ω1|t1+t2+α2−γ t3|e−ω2|t3|

×〈
ψα, (ε1 · x)Hαe−iαγ−1k1·x H−2

α e−|t1|Hα e−iαγ−1k2·x Hα(ε2 · x)ψα

〉

×〈
ψα, (ε1 · x)Hαeiαγ−1k1·x H−2

α e−|t2|Hα eiαγ−1k2·x Hα(ε2 · x)ψα

〉
. (3.7)

Let us note the following equality,∫
R3

dt1dt2dt3 e−ω1α
γ−2|t1+t2+α2−γ t3|e−ω2|t3|e−λ1|t1|e−λ2|t2|

= (2π )−1α2−γ

∫
R

du
2ω1

ω2
1 + α4−2γ u2

· 2ω2

ω2
2 + α4−2γ u2

· 2λ1

λ2
1 + u2

· 2λ2

λ2
2 + u2

, (3.8)

which is proven by using the Fourier transform

(2π )−1
∫
R

du e−iut 2ω

ω2 + u2
= e−ω|t | . (3.9)

Viewing λ1 and λ2 as spectral parameters for Hα , one arrives at

I4(α−γ R) = α6γ−6(2π )−1
∫
R

du
∫
R6

dk1dk2 |ϕ̂(αγ k1)|2|ϕ̂(αγ k2)|2

×ei(k1+k2)·r k2
1

k2
1 + α4−2γ u2

· k2
2

k2
2 + α4−2γ u2

×2
〈
ψα, (ε1 · x)Hαe−ik1·xα H−1

α (H 2
α + u2)−1 e−ik2·xα Hα(ε2 · x)ψα

〉
×2

〈
ψα, (ε1 · x)Hαeik1·xα H−1

α (H 2
α + u2)−1 eik2·xα Hα(ε2 · x)ψα

〉
. (3.10)

Next we use

Hα(ε · x)ψα = [Hα, ε · x]ψα = iε · pψα (3.11)

and also introduce the integral kernel of (1l − Pα)H−1
α (H 2

α + u2)−1 as

Ku,α(x, x ′) = 〈x |(1l − Pα)H−1
α (H 2

α + u2)−1|x ′〉 (3.12)

with Pα the projection onto ψα . Note that 〈(ε · p)ψα , eik · xψα〉 = 0, which allows one to insert
1l − Pα . Since Hα has a spectral gap, uniformly in α, Ku, α is bounded and 〈φ, Ku, αφ〉 ∼= C〈φ, φ〉u− 2

for u → ∞. With this notation we arrive at the starting representation of I4,

I4(α−γ R) = α6γ−6(2π )−14
∫
R

du
∫
R6

dk1dk2 |ϕ̂(αγ k1)|2|ϕ̂(αγ k2)|2

×k2
1(k2

1 + α4−2γ u2)−1k2
2(k2

2 + α4−2γ u2)−1

×
( ∑

λ1,λ2

∫
R12

dxdx ′dydy′Ku,α(x, x ′)Ku,α(y, y′)eik1·(r+αγ−1(y−x))eik2·(r+αγ−1(y′−x ′))

×(ε1 · px )(ε1 · py)(ε2 · px ′ )(ε2 · py′ )ψα(x)ψα(y)ψα(x ′)ψα(y′)
)

. (3.13)

Step 2 (Error estimate for vanishing phase): We deal with the set on which the phase in (3.13) is
close to 0 and define

r,α = {
(x, y) ∈ R3 × R3

∣∣∣ |r + αγ−1(y − x)| ≥ 1
2 R

}
, (3.14)
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correspondingly ′
r,α with x, y replaced by x′, y′. Ĩ4 is I4 from (3.13) with the integration restricted to

r,α × ′
r,α . The error term equals I error

4 = I4 − Ĩ4. We use the Cauchy-Schwarz inequality inside
(3.13) and perform the u, k1, k2 integrations. Since Ku, α is bounded, this yields

|I error
4 (α−γ R)| ≤ Cα−4γ−8

∫
R6

dk1dk2|k1|2|k2|2|ϕ̂(k1)|2|ϕ̂(k2)|2

×
( ∫

R6\r,α

dxdy|∇ψα(x)|2|∇ψα(y)|2
)1/2

. (3.15)

The ground state ψα has the exponential decay. Therefore

|I error
4 (α−γ R)| ≤ Cα−4γ−8e−κ Rα1−γ

, (3.16)

which tends to 0 as α → 0. In the remainder we will study Ĩ4.

Step 3 (Angular integration): The k1, k2 integrations are done in spherical coordinates setting
dk j = w2

j dw j d
 j , j = 1, 2. Let Q(k) = 1l − |k̂〉〈k̂| be the transverse projection. Then the angular
part reads ∫

d
1 eik1·a1 Q(k1) ⊗
∫

d
2 eik2·a2 Q(k2) (3.17)

with

a1 = r + αγ−1(y − x), a2 = r + αγ−1(y′ − x ′). (3.18)

We omit the index and compute
∫

d
 eik·a Q(k) for general a.

Let Oa be an orthogonal transformation in R3 such that Oaa = |a|e3, where e3 = (0, 0, 1)T.
Then ∫

d
 eik·a Q(k) =
∫

d
 eik·OaaO−1
a Q(k)Oa

= 2π

∫ π

0
dϑ sin ϑ ei|k||a| cos ϑO−1

a B̃(ϑ)Oa , (3.19)

where B̃i j (ϑ) = δi j b̃ j (ϑ), i, j = 1, 2, 3, with

b̃1(ϑ) = b̃2(ϑ) = 1

2
(1 + (cos ϑ)2), b̃3(ϑ) = 1 − (cos ϑ)2 . (3.20)

Integrating over ϑ yields ∫
d
 eik·a Q(k) = 2πO−1

a B(|k||a|)Oa , (3.21)

where Bij(s) = δijbj(s) with

b1(s) = b2(s) = ĝ(s) − ĝ′′(s) , b3(s) = 2(ĝ(s) + ĝ′′(s)) , ĝ(s) = s−1 sin s . (3.22)

Thus, for j = 1, 2, ∫
d
 j eik j ·a j Q(k j ) = 2πO−1

a j
B(|k j ||a j |)Oa j . (3.23)

Step 4 (Radial integration): The radial integrations are of the form

1
2

∫
R

dw�̂(αγ w)w4(w2 + α4γ−2u2)−1 f (|a||w|) (3.24)

with f (s) = ĝ(s) = s−1 sin s or ĝ′′(s) = 2s−3 sin s − 2s−2 cos s − s−1 sin s. Here �̂(|k|) = |ϕ̂(k)|2
and we extended �̂ to R by reflection at 0. We introduce a new function ρ by

ρ(v) = (2π )−1/2
∫
R

dw�̂(w)eivw. (3.25)
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Then one has
∫
R

dvρ(v) = (2π )1/2�̂(0) = (2π )−5/2 . (3.26)

Let σ (|x|) = ϕ*ϕ(x). Then

ρ(v) = (2π )−3/2
∫ ∞

v

dr rσ (r ) (3.27)

for v ≥ 0. Since ϕ is continuous and of compact support, ρ ∈ C1(R) and ρ has compact support.
We plan to use Plancherel’s theorem in (3.24) and obtain, in the sense of distributions,

c1(v; |a|, u) = (2π )−1/2
∫
R

dw eivww3(w2 + u2)−1|a|−1 sin(|a|w)

= (4|a|)−1(2π )1/2
(

− 2δ′(v + |a|) − u2sgn(v + |a|) e−|u||v+|a||

+ 2δ′(v − |a|) + u2sgn(v − |a|) e−|u||v−|a||
)

, (3.28)

c2(v; |a|, u) = (2π )−1/2
∫
R

dw eivww(w2 + u2)−1|a|−3 sin(|a|w)

= (4|a|3)−1(2π )1/2
(

sgn(v + |a|) e−|u||v+|a|| − sgn(v − |a|) e−|u||v−|a||
)

, (3.29)

c3(v; |a|, u) = (2π )−1/2
∫
R

dw eivww2(w2 + u2)−1|a|−2 cos(|a|w)

= (4|a|2)−1(2π )1/2
(

2δ(v + |a|) − |u| e−|u||v+|a||

+ 2δ(v − |a|) − |u| e−|u||v−|a||
)

(3.30)

with the sign function sgn(t) = 1 for t ≥ 0, sgn(t) = − 1 for t < 0. Since ρ ∈ C1, Plancherel’s
theorem yields

d1(|a|, u, α) =
∫
R

dvα−γ ρ(α−γ v)
(
c1(v; |a|, u) − c2(v; |a|, u) + c3(v; |a|, u)

)
,

d2(|a|, u, α) = d1(|a|, u, α) ,

d3(|a|, u, α) =
∫
R

dvα−γ ρ(α−γ v)2
(
c2(v; |a|, u) − c3(v; |a|, u)

)
(3.31)

and

Di j (|a|, u, α) = (2π )δi j d j (|a|, u, α) . (3.32)

We now combine all terms. The ground state ψα is invariant under rotations. It is convenient to
write

ψα(x) = ψα,rad(|x |) , ∇ψα(x) = ψ ′
α,rad(|x |)x̂ , (3.33)
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where x̂ = x/|x |. Then (3.13) becomes

Ĩ4(α−γ R)

= α6γ−6(2π )−14
∫
R

du
∫

r,α×′
r,α

dxdydx ′dy′

×
(

x̂ · O−1
r+αγ−1(y−x) D

(|r + αγ−1(y − x)|, α2−γ u, α
)
Or+αγ−1(y−x) ŷ

)

×
(

x̂ ′ · O−1
r+αγ−1(y′−x ′) D

(|r + αγ−1(y′ − x ′)|, α2−γ u, α
)
Or+αγ−1(y′−x ′) ŷ

′
)

×ψ ′
α,rad(|x |)ψ ′

α,rad(|x ′|)ψ ′
α,rad(|y|)ψ ′

α,rad(|y′|)Ku,α(x, x ′)Ku,α(y, y′) . (3.34)

Step 5 (The limit α → 0): c1, c2, c3 contain terms proportional to δ and δ′. Since, by assumption,
� has compact support and since |aj| is bounded away from zero on the prescribed domain of
integration, these terms vanish for α sufficiently small. Thus only the regular terms, containing the
exponential function, have still to be considered.

We have to discuss the cases 1 < γ < 2 and γ ≥ 2 separately.
1 < γ < 2. As before we use the uniform bound from Ku, α . Therefore, the terms proportional

to u0, u, u2 have a uniformly integrable bound in u. By dominated convergence only the term
proportional to u0 does not vanish as α → 0. The terms proportional to u3, u4 are bounded as

(1 + u2)−2
(
(α2−γ u)4 + (α2−γ |u|)3

)
e−κα2−γ |u| ≤ Cα3(2−γ ) e−κ(2−γ )|u| (3.35)

with κ ≥ κ0 > 0 uniformly in α. Thus the integral over u vanishes as α → 0.
We are left with the products of the u0 terms. As α → 0, the matrix Or+αγ−1(y−x) tends to the

unit matrix. Thus we conclude

lim
α→0

α6−6γ Ĩ4(α−γ R)

= (2π )−14
(

(2π )3/2(2R3)−1 1
2

∫
R

dvρ(v)
)2

×
∫
R

du
∫
R12

dxdx ′dydy′(x̂1 ŷ1 + x̂2 ŷ2 + 2x̂3 ŷ3
)(

x̂ ′
1 ŷ′

1 + x̂ ′
2 ŷ′

2 + 2x̂ ′
3 ŷ′

3

)

× ψ ′
hy,rad(|x |)ψ ′

hy,rad(|x ′|)ψ ′
hy,rad(|y|)ψ ′

hy,rad(|y′|)Ku,0(x, x ′)Ku,0(y, y′) . (3.36)

Using the rotational invariance of Ku, 0 one arrives at

lim
α→0

α6−6γ Ĩ4(α−γ R) = (2π )−32−13R−6
∫
R

du
(

1
3

〈
ψhy, x · Hhy(H 2

hy + u2)−1xψhy
〉)2

= (2π )−22−2aVW R−6. (3.37)

2 ≤ γ . We substitute u by αγ − 2u. The uniform bound now results from the exponential terms
exp[−|u|v ± |a|], using that

∫
R

dv|ρ(v)|e−|u||αγ v±|a|| ≤ Ce−κ|u| (3.38)

uniformly in α, provided α is sufficiently small, since ρ(v) has compact support by the assumption.
In the limit α → 0 one obtains a formula which has the same structure as in (3.36). Only the
coefficients in front of x̂ j , ŷ j and x̂ ′

j , ŷ′
j are now different.
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For γ = 2, one obtains

lim
α→0

α−6 Ĩ4(α−2 R) = (2π )2
( ∫

R
dvρ(v)

)2

×
∫
R

du
(
β2

1 + 3β2
2 + 3β2

3 − 2β1β2 − 6β2β3 + 2β1β3

)
2e−2R|u|

×
(

1
3

〈
ψhy, x · (1l − Phy)Hhy(H 2

hy + u2)−1xψhy
〉)2

(3.39)

with β1 = − R− 1u2, β2 = R− 3, β3 = − R− 2|u|, which yields

lim
α→0

α−6 Ĩ4(α−2 R) = (2π )−22−1hco(R) . (3.40)

For γ > 2, one has the same expression except that from the rescaling of du one picks up
the factor αγ − 2 and that the factor (1l − Phy)(H 2

hy + u2)−1 now reads (1l − Phy)(H 2
hy + (αγ−2u)2)−1,

which is still uniformly bounded in u. Hence

lim
α→0

α8−7γ Ĩ4(α−γ R) = (2π )−22−1aCP R−7 . (3.41)

This concludes the proof of Proposition 3.1. �

IV. STRONG RESOLVENT CONVERGENCE

We discuss the limit α → 0 for a free electron coupled to the radiation field on the scale set by
the hydrogen atom. Then the energies are of order α2 and Hamiltonian on that scale reads

T1,α = 1
2 :

(
p −

√
4πα3/2 Aα(x)

)2
: +Hf . (4.1)

The coupling function in (4.1) is

gα(k, λ) =
√

4πα3/2ϕ̂(α2k)
1√
2ω

eiαk·xε(k, λ). (4.2)

Note that ‖gα‖∼=α − 1/2, which makes the limit α → 0 singular.
The ultraviolet cutoff as α − 2 corresponds to a charge distribution localized on the relativistic

scale. If the charge distribution would have a width of the order of the Bohr radius, then ϕ̂(α2k)
would have to be replaced by ϕ̂(αk). Thus it is natural to introduce the parameter δ with 0 ≤ δ < 1
and to define T (δ)

1,α by (4.1) with ϕ̂(α2k) substituted through ϕ̂(α2−δk). If 0 < δ < 1, our arguments
in Secs. 2 and 3 would not be altered, except for a0 = 0. But now the resolvent convergence can be
established.

Proposition 4.1: Let 0 < δ < 2. Then, in the sense of strong convergence of resolvents,

lim
α→0

T (δ)
1,α = 1

2 p2 + Hf . (4.3)

Proof: Let

T (δ)
1.α = 1

2 :
(

p −
√

4πα3/2 Aα,δ(x)
)2

: +Hf = T0 + Bα,δ , (4.4)

where

T0 = 1
2 p2 + Hf ,

Bα,δ = −
√

4πα3/2 p · (A+
α,δ(x) + A−

α,δ(x))

+2πα3
(

A+
α,δ(x) · A+

α,δ(x) + 2A+
α,δ(x) · A−

α,δ(x) + A−
α,δ(x) · A−

α,δ(x)
)
. (4.5)
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The coupling function of Aα, δ(x) is given by

gα,δ(k, λ) = ϕ̂(α2−δk)
1√
2ω

eiαk·xε(k, λ) . (4.6)

If it can be shown that

|〈φ, Bα,δφ〉| ≤ C(α)‖(T0 + 1l)1/2φ‖ , C(α) → 0 as α → 0 , (4.7)

for all φ ∈ dom(T 1/2
0 ), then one concludes T (δ)

1,α → 1
2 p2 + Hf as α → 0 in the norm resolvent sense

by the general theorem [Ref. 20, Theorem 8.25], as based on the famous Nelson’s argument.21 To
prove (4.7), we apply the standard bounds

‖a( f )ψ‖ ≤ ‖ω−1/2 f ‖‖(Hf + 1l)1/2ψ‖ , (4.8)

‖a( f )∗ψ‖2 ≤ (‖ f ‖2 + ‖ω−1/2 f ‖2)‖(Hf + 1l)1/2ψ‖2 . (4.9)

As to A−
α,δ(x), the bound (4.8) translates to

α3/2‖A−
α,δ(x)ψ‖ ≤ α3/2‖ω−1/2gα,δ‖‖(T0 + 1l)1/2ψ‖ (4.10)

≤ O(α(1+δ)/2)‖(T0 + 1l)1/2ψ‖ . (4.11)

Similarly, A−
α,δ · A−

α,δ can be estimated as

α3‖(Hf + 1l)−1/2 A−
α,δ(x) · A−

α,δ(x)ψ‖
≤ α3‖A+

α,δ(Hf + 1l)−1/2‖‖A−
α,δ(Hf + 1l)−1/2‖‖(Hf + 1l)1/2ψ‖

≤ α3(‖gα,δ‖2 + ‖ω−1/2gα,δ‖2)1/2‖ω−1/2gα,δ‖‖(Hf + 1l)1/2ψ‖
≤ O(α3δ/2)‖(Hf + 1l)1/2ψ‖ . (4.12)

Thus we arrive at

α3/2|〈φ, p · A−
α,δφ〉| ≤ O(α(1+δ)/2)‖(T0 + 1l)1/2φ‖2 (4.13)

and

α3|〈φ, A−
α,δ(x) · A−

α,δ(x)φ〉| ≤ α3‖(Hf + 1l)1/2φ‖‖(Hf + 1l)−1/2 A−
α,δ · A−

α,δφ‖
≤ O(α3δ/2)‖(T0 + 1l)1/2φ‖2 (4.14)

for each φ ∈ dom(T 1/2
0 ). Hence (4.7) is satisfied and the assertion follows. �

The case δ = 0 is physically distinguished, but Nelson’s argument fails and no other functional
analytic method seems to be available. We devise an alternative approach based on functional
integrals, which clearly displays that δ = 0 is on the borderline. In our context functional integration
is explained in Ref. 15, Chapter 14, and at greater depth in Ref. 22. The propagator e−τT1,α can be
written as an integral with respect to Brownian motion for the particle and a Gaussian space-time
measure for the Maxwell field. It is convenient to pick for ψ the particular form

ψ = φ ⊗ W ( f )
 . (4.15)

Here φ ∈ L2(R3), 
 is the Fock vacuum, and W ( f ) is the Weyl operator

W ( f ) = e(a( f )∗−a( f )) , f ∈ L2(R3) ⊗ C2 . (4.16)

Note that the linear span of these vectors is dense in L2(R3) ⊗ F. Integrating over the Maxwell field
one arrives at the following expression:

〈ψ, e−τT1,αψ〉 = EW
(
φ(q0)∗φ(qτ ) e−A

)
, (4.17)
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where t �→ qt is a path in R3 and EW denotes average over the Wiener measure. The action A results
from the Gaussian integration over the Maxwell field and consists of a sum of three pieces,

A = A1 + A2 + A3 . (4.18)

A1 is the piece corresponding to f = 0,

A1 = 4πα3
∫ τ

0

∫ t

0
dqt · Wα(qt − qs, t − s) dqs (4.19)

with the photon propagator

Wα(x, t) =
∫
R3

dk|ϕ̂(α2k)|2 1

2ω(k)
eik·xαe−ω(k)|t | Q(k) (4.20)

and Q(k) = 1l − |k̂〉〈k̂|, the transverse projection. Equation (4.19) is an iterated Ito integral. It avoids
the diagonal {s = t} in accordance with the Wick ordering : :. A3 reflects the term coming from
W ( f ),

A3 =
∫
R3

dk
1

ω
(1 + e−ωτ ) f̂ ∗(k) · Q(k) f̂ (k) . (4.21)

Note that A3 does not depend on qt and α. Finally, the cross term A2 reads

A2 = −i
√

4πα3/2
∫ τ

0

∫
R3

dk ϕ̂(α2k)
1√
2ω

eik·qt α
(
e−ωt + e−ω(τ−t)

)
dqt · Q(k) f̂ (k) . (4.22)

We will argue that A2 → 0 and (qτ ,A1) jointly tends to a Gaussian as α → 0. The complete
argument uses the martingale central limit theorem and the uniform lower bound on the energy for
the control of the exponential moments.16

The cross term is small, since for the expectation E0 with respect to standard Brownian motion
starting at q0 = 0 it holds

E0
(|A2|2

) = 4πα3
∫ τ

0

∫
R6

dk1dk2 ϕ̂(α2k1)ϕ̂(α2k2)(2|k1|2|k2|)−1/2

×e−(α2 1
2 (k1+k2)2+|k1|+|k2|)t f̂ (k1) · Q(k1)Q(k2) f̂ (k2)

≤ απ‖ϕ̂ω−1‖2‖ f̂ ‖2 . (4.23)

Ignoring the cross term one arrives at

〈
φ ⊗ W ( f )
, e−τT1,α φ ⊗ W ( f )


〉 = EW

(
φ(q0)∗φ(qτ ) e−A1

)
e−A3 + O(α) . (4.24)

It is now convenient to rewrite (4.24) using that A1 depends only on the increments. Then

〈
φ ⊗ W ( f )
, e−τT1,α φ ⊗ W ( f )


〉 =
∫
R3

dk|φ̂(k)|2E0
(
e−A1 eik·qτ

)
e−A3 + O(α) , (4.25)

To turn to A1 we first note that E0(A1) = 0 by Ito calculus. Second, we use the Brownian
motion scaling qt = αqt/α2 to rewrite A1 as

A1 = 4πα

∫
0≤s<t≤τ/α2

dqt · W1(qt − qs, t − s) dqs . (4.26)

By definition W1 does not depend on α. W1 decays as (t − s)− 2, which should provide enough
independence for a central limit theorem hold. Thus the key input is that (A1, qτ ) jointly converge
to a Gaussian as α → 0. One checks that

E0(A1qτ ) = 0 . (4.27)
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Hence the assumption is that

lim
α→0

A1 = ξG (4.28)

with ξG a centered Gaussian random variable independent of qτ . To complete our argument we
compute the variance of A1,

E0
(
A 2

1

)

= (4πα)2
∫

0≤s1<t1≤τ/α2

∫
0≤s2<t2≤τ/α2

E0
((

dqt1 · W1(qt1 − qs1 , t1 − s1) dqs1

)

×(
dqt2 · W1(qt2 − qs2 , t2 − s2) dqs2

))

= (4πα)2
∫

0≤s<t≤τ/α2
E0

(
Tr

(
W1(qt − qs, t − s)2

))
dsdt . (4.29)

Hence

lim
α→0

E0
(
A 2

1 ) = (4π
)2

∫ ∞

0
dt

∫
R6

dk1dk2 |ϕ̂(k1)|2|ϕ̂(k2)|2(2|k1|2|k2|)−1

× exp
{

− 1

2

(
(k1 + k2)2 + |k1| + |k2|

)
t
}

Tr(Q(k1)Q(k2))

= 2a0τ . (4.30)

Returning to (4.24) one concludes that

lim
α→0

〈
φ ⊗ W ( f )
, e−τT1,α φ ⊗ W ( f )


〉 =
∫
R3

dk |φ̂(k)|2E0(eik·qτ )E(eξG ) e−A3

= 〈
φ ⊗ W ( f )
, e−τ ((p2/2)+Hf−a0)φ ⊗ W ( f )


〉
. (4.31)

If one reintroduces the parameter δ from above, then the variance vanishes provide δ > 0, in
accordance with Proposition 4.1.
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