7,794 research outputs found

    Two-component electron fluid in underdoped high-TcT_c cuprate superconductors

    Full text link
    Evidence from NMR of a two-component spin system in cuprate high-TcT_c superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-component scenario is restricted to the optimal and underdoped regimes and arises from the upper and lower branches of the reconstructed energy-momentum dispersion proposed by Yang, Rice and Zhang (YRZ) to describe the pseudogap. We calculate the spin susceptibility within the YRZ formalism and show that the doping and temperature dependence reproduces the experimental data for the cuprates.Comment: 5 pages, 2 figures, accepted for publication in European Physics Letter

    Evidence for two electronic components in high-temperature superconductivity from NMR

    Full text link
    A new analysis of 63Cu and 17O NMR shift data on La1.85Sr0.15CuO4 is reported that supports earlier work arguing for a two-component description of this material, but conflicts with the widely held view that the cuprates are a one-component system. The data are analyzed in terms of two components A and B with susceptibilities Chi(A), Chi(B), and Chi(AB)=Chi(BA) . We find that above Tc, Chi(AB) and Chi(BB) are independent of temperature and obtain for the first time the temperature dependence of all three susceptibilities above Tc as well as the complete temperature dependence of Chi(AA)+Chi(AB) and of Chi(AB)+Chi(BB) below Tc. The form of the results agrees with that recently proposed by Barzykin and Pines.Comment: 14 pages, 4 figure

    Dual-fermion approach to the Anderson-Hubbard model

    Get PDF
    We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the quality of the approximation in comparison with an established cluster method. We continue with a three-dimensional (3d) system and look at the antiferromagnetic, Mott and Anderson localization transitions. The dual fermion approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results and it allows one to calculate the hysteresis in the double occupancy in 3d taking into account nonlocal correlations
    • …
    corecore