757 research outputs found

    Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents

    Get PDF
    The results of an experimental investigation carried out to measure combined wave and current loads on horizontally submerged square and rectangular cylinders are reported in this paper. The wave and current induced forces on a section of the cylinders with breadth-depth (aspect) ratios equal to 1, 0.5, and 0.75 are measured in a wave tank. The maximum value of Keulegan-Carpenter (KC) number obtained in waves alone is about 5 and Reynolds (Re) number ranged from 6.3976103 to 1.186105. The drag (CD) and inertia (CM) coefficients for each cylinder are evaluated using measured sectional wave forces and particle kinematics calculated from linear wave theory. The values of CD and CM obtained for waves alone have already been reported (Venugopal, V., Varyani, K. S., and Barltrop, N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Engineering, 2006, 33, 11-12, 1669-1704) and the coefficients derived in combined waves and currents are presented here. The results indicate that both drag and inertia coefficients are strongly affected by the presenceof the current and show different trends for different cylinders. The values of the vertical component inertia coefficients (CMY) in waves and currents are generally smaller than the inertia coefficients obtained in waves alone, irrespective of the current's magnitude and direction. The results also illustrate the effect of a cylinder's aspect ratio on force coefficients. This study will be useful in the design of offshore structures whose columns and caissons are rectangular sections

    The role of ion-molecule reactions in the growth of heavy ions in Titan's ionosphere

    Get PDF
    This is the published version. Copyright 2014 American Geophysical UnionThe Ion and Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) have observed Titan's ionospheric composition and structure over several targeted flybys. In this work we study the altitude profiles of the heavy ion population observed by the Cassini Plasma Spectrometer-Ion Beam Spectrometer (CAPS-IBS) during the nightside T57 flyby. We produce altitude profiles of heavy ions from the C6–C13 group (Ci indicates the number, i, of heavy atoms in the molecule) using a CAPS-IBS/INMS cross calibration. These altitude profiles reveal structure that indicates a region of initial formation and growth at altitudes below 1200 km followed by a stagnation and dropoff at the lowest altitudes (1050 km). We suggest that an ion-molecule reaction pathway could be responsible for the production of the heavy ions, namely reactions that utilize abundant building blocks such as C2H2 and C2H4, which have been shown to be energetically favorable and that have already been identified as ion growth patterns for the lighter ions detected by the INMS. We contrast this growth scenario with alternative growth scenarios determining the implications for the densities of the source heavy neutrals in each scenario. We show that the high-mass ion density profiles are consistent with ion-molecule reactions as the primary mechanism for large ion growth. We derive a production rate for benzene from electron recombination of C6H7+ of 2.4 × 10−16 g cm−2 s−1 and a total production rate for large molecules of 7.1 × 10−16 g cm−2 s−1

    Admission Decision-Making in Hospital Emergency Departments: the Role of the Accompanying Person

    Get PDF
    In resource-stretched emergency departments, people accompanying patients play key roles in patients' care. This article presents analysis of the ways health professionals and accompanying persons talked about admission decisions and caring roles. The authors used ethnographic case study design involving participant observation and semi-structured interviews with 13 patients, 17 accompanying persons and 26 healthcare professionals in four National Health Service hospitals in south-west England. Focused analysis of interactional data revealed that professionals’ standardization of the patient-carer relationship contrasted with accompanying persons' varied connections with patients. Accompanying persons could directly or obliquely express willingness, ambivalence and resistance to supporting patients’ care. The drive to avoid admissions can lead health professionals to deploy conversational skills to enlist accompanying persons for discharge care without exploring the meanings of their particular relations with patients. Taking a relationship-centered approach could improve attention to accompanying persons as co-producers of healthcare and participants in decision-making

    Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape

    Full text link
    In this study, we develop a best fit description of Titan's upper atmosphere between 500 km and 1500 km, using a one‐dimensional (1‐D) version of the three‐dimensional (3‐D) Titan Global Ionosphere‐Thermosphere Model. For this modeling, we use constraints from several lower atmospheric Cassini‐Huygens investigations and validate our simulation results against in situ Cassini Ion‐Neutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a self‐consistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41–1.47 ×10 11 CH 4  m −2 s −1 and 1.08 ×10 14  H 2  m −2 s −1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd

    The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Get PDF
    Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2

    Collaborative action for person-centred coordinated care (P3C): an approach to support the development of a comprehensive system-wide solution to fragmented care

    Get PDF
    BACKGROUND: Fragmented care results in poor outcomes for individuals with complexity of need. Person-centred coordinated care (P3C) is perceived to be a potential solution, but an absence of accessible evidence and the lack of a scalable 'blue print' mean that services are 'experimenting' with new models of care with little guidance and support. This paper presents an approach to the implementation of P3C using collaborative action, providing examples of early developments across this programme of work, the core aim of which is to accelerate the spread and adoption of P3C in United Kingdom primary care settings. METHODS: Two centrally funded United Kingdom organisations (South West Collaboration for Leadership in Applied Health Research and Care and South West Academic Health Science Network) are leading this initiative to narrow the gap between research and practice in this urgent area of improvement through a programme of service change, evaluation and research. Multi-stakeholder engagement and co-design are core to the approach. A whole system measurement framework combines outcomes of importance to patients, practitioners and health organisations. Iterative and multi-level feedback helps to shape service change while collecting practice-based data to generate implementation knowledge for the delivery of P3C. The role of the research team is proving vital to support informed change and challenge organisational practice. The bidirectional flow of knowledge and evidence relies on the transitional positioning of researchers and research organisations. RESULTS: Extensive engagement and embedded researchers have led to strong collaborations across the region. Practice is beginning to show signs of change and data flow and exchange is taking place. However, working in this way is not without its challenges; progress has been slow in the development of a linked data set to allow us to assess impact innovations from a cost perspective. Trust is vital, takes time to establish and is dependent on the exchange of services and interactions. If collaborative action can foster P3C it will require sustained commitment from both research and practice. This approach is a radical departure from how policy, research and practice traditionally work, but one that we argue is now necessary to deal with the most complex health and social problems

    High-dimensional analysis reveals distinct endotypes in patients with idiopathic inflammatory myopathies

    Get PDF
    The idiopathic inflammatory myopathies (IIM) are a rare clinically heterogeneous group of conditions affecting the skin, muscle, joint, and lung in various combinations. While myositis specific autoantibodies are well described, we postulate that broader immune endotypes exist in IIM spanning B cell, T cell, and monocyte compartments. This study aims to identify immune endotypes through detailed immunophenotyping of peripheral blood mononuclear cells (PBMCs) in IIM patients compared to healthy controls. We collected PBMCs from 17 patients with a clinical diagnosis of inflammatory myositis and characterized the B, T, and myeloid cell subsets using mass cytometry by time of flight (CyTOF). Data were analyzed using a combination of the dimensionality reduction algorithm t-distributed stochastic neighbor embedding (t-SNE), cluster identification, characterization, and regression (CITRUS), and marker enrichment modeling (MEM); supervised biaxial gating validated populations identified by these methods to be differentially abundant between groups. Using these approaches, we identified shared immunologic features across all IIM patients, despite different clinical features, as well as two distinct immune endotypes. All IIM patients had decreased surface expression of RP105/CD180 on B cells and a reduction in circulating CD3+CXCR3+ subsets relative to healthy controls. One IIM endotype featured CXCR4 upregulation across all cellular compartments. The second endotype was hallmarked by an increased frequency of CD19+CD21loCD11c+ and CD3+CD4+PD1+ subsets. The experimental and analytical methods we describe here are broadly applicable to studying other immune-mediated diseases (e.g., autoimmunity, immunodeficiency) or protective immune responses (e.g., infection, vaccination)

    An empirical approach to modeling ion production rates in Titan’s ionosphere I: Ion production rates on the dayside and globally

    Get PDF
    Titan's ionosphere is created when solar photons, energetic magnetospheric electrons or ions, and cosmic rays ionize the neutral atmosphere. Electron densities generated by current theoretical models are much larger than densities measured by instruments on board the Cassini orbiter. This model density overabundance must result either from overproduction or from insufficient loss of ions. This is the first of two papers that examines ion production rates in Titan's ionosphere, for the dayside and nightside ionosphere, respectively. The first (current) paper focuses on dayside ion production rates which are computed using solar ionization sources (photoionization and electron impact ionization by photoelectrons) between 1000 and 1400 km. In addition to theoretical ion production rates, empirical ion production rates are derived from CH4, CH3+, and CH4+ densities measured by the INMS (Ion Neutral Mass Spectrometer) for many Titan passes. The modeled and empirical production rate profiles from measured densities of N2+ and CH4+ are found to be in good agreement (to within 20%) for solar zenith angles between 15 and 90°. This suggests that the overabundance of electrons in theoretical models of Titan's dayside ionosphere is not due to overproduction but to insufficient ion losses
    corecore