1,379 research outputs found

    Complex Behavior in Simple Models of Biological Coevolution

    Full text link
    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure

    Extended twin study of alcohol use in Virginia and Australia

    Get PDF
    Drinking alcohol is a normal behavior in many societies, and prior studies have demonstrated it has both genetic and environmental sources of variation. Using two very large samples of twins and their first-degree relatives (Australia ≈ 20,000 individuals from 8,019 families; Virginia ≈ 23,000 from 6,042 families), we examine whether there are differences: (1) in the genetic and environmental factors that influence four interrelated drinking behaviors (quantity, frequency, age of initiation, and number of drinks in the last week), (2) between the twin-only design and the extended twin design, and (3) the Australian and Virginia samples. We find that while drinking behaviors are interrelated, there are substantial differences in the genetic and environmental architectures across phenotypes. Specifically, drinking quantity, frequency, and number of drinks in the past week have large broad genetic variance components, and smaller but significant environmental variance components, while age of onset is driven exclusively by environmental factors. Further, the twin-only design and the extended twin design come to similar conclusions regarding broad-sense heritability and environmental transmission, but the extended twin models provide a more nuanced perspective. Finally, we find a high level of similarity between the Australian and Virginian samples, especially for the genetic factors. The observed differences, when present, tend to be at the environmental level. Implications for the extended twin model and future directions are discussed

    Ensemble averaged entanglement of two-particle states in Fock space

    Full text link
    Recent results, extending the Schmidt decomposition theorem to wavefunctions of identical particles, are reviewed. They are used to give a definition of reduced density operators in the case of two identical particles. Next, a method is discussed to calculate time averaged entanglement. It is applied to a pair of identical electrons in an otherwise empty band of the Hubbard model, and to a pair of bosons in the the Bose-Hubbard model with infinite range hopping. The effect of degeneracy of the spectrum of the Hamiltonian on the average entanglement is emphasised.Comment: 19 pages Latex, changed title, references added in the conclusion

    Entanglement of a microcanonical ensemble

    Get PDF
    We replace time-averaged entanglement by ensemble-averaged entanglement and derive a simple expression for the latter. We show how to calculate the ensemble average for a two-spin system and for the Jaynes-Cummings model. In both cases the time-dependent entanglement is known as well so that one can verify that the time average coincides with the ensemble average.Comment: 10 page

    Predicting young adult social functioning from developmental trajectories of externalizing behavior

    Get PDF
    Background. The long-term consequences of child and adolescent externalizing problems often involve a wide spectrum of social maladaptation in adult life. The purpose of this study was to describe the predictive link of child and adolescent externalizing developmental trajectories to social functioning in adulthood. Method. Social functioning was predicted from developmental trajectories of parent-reported aggression, opposition, property violations and status violations that were defined in a longitudinal multiple birth cohort study of 2076 males and females aged 4-18 years. Social functioning was assessed using self-reports by young adults aged 18-30 years. Linear and logistic regression analyses were used to describe the extent to which developmental trajectories are prospectively related to social functioning. Results. Children with high-level trajectories of opposition and status violations reported more impaired social functioning as young adults than children with high-level trajectories of aggression and property violations. Young adults who showed onset of problems in adolescence reported overall less impaired social functioning than individuals with high-level externalizing problems starting in childhood. Overall, males reported more impaired social functioning in adulthood than females. However, females with persistent high-level externalizing behaviour reported more impairment in relationships than males with persistent high-level externalizing behaviour. Conclusion. The long-term consequences of high levels of opposition and status violations in childhood to serious social problems during adulthood are much stronger than for individuals who show only high levels of aggressive antisocial behaviours. Copyright © 2007 Cambridge University Press

    Strong Coupling Theory of Two Level Atoms in Periodic Fields

    Get PDF
    We present a new convergent strong coupling expansion for two-level atoms in external periodic fields, free of secular terms. As a first application, we show that the coherent destruction of tunnelling is a third-order effect. We also present an exact treatment of the high-frequency region, and compare it with the theory of averaging. The qualitative frequency spectrum of the transition probability amplitude contains an effective Rabi frequency.Comment: 4 pages with 3 figure

    Signal to noise ratio in parametrically-driven oscillators

    Full text link
    Here we report a theoretical model based on Green's functions and averaging techniques that gives ana- lytical estimates to the signal to noise ratio (SNR) near the first parametric instability zone in parametrically- driven oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of the parametrically-driven oscillator to the added ac drive, while the noise term has two dif- ferent measures: one is dc and the other is ac. The dc measure of noise is given by a time-average of the statistically-averaged fluctuations of the position of the parametric oscillator due to thermal noise. The ac measure of noise is given by the amplitude of the statistically-averaged fluctuations at the frequency of the parametric pump. We observe a strong dependence of the SNR on the phase between the external drive and the parametric pump, for some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is achieved.Comment: Submitted to Phys. Rev.

    The self-consistent gravitational self-force

    Full text link
    I review the problem of motion for small bodies in General Relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed; I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long timescales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.Comment: 44 pages, 4 figure
    • …
    corecore