8,105 research outputs found

    Maser Source Finding Methods in HOPS

    Full text link
    The {\bf H}2_2{\bf O} Southern Galactic {\bf P}lane {\bf S}urvey (HOPS) has observed 100 square degrees of the Galactic plane, using the Mopra radio telescope to search for emission from multiple spectral lines in the 12\,mm band (19.5\,--\,27.5\,GHz). Perhaps the most important of these spectral lines is the 22.2\,GHz water maser transition. We describe the methods used to identify water maser candidates and subsequent confirmation of the sources. Our methods involve a simple determination of likely candidates by searching peak emission maps, utilising the intrinsic nature of water maser emission - spatially unresolved and spectrally narrow-lined. We estimate completeness limits and compare our method with results from the {\sc Duchamp} source finder. We find that the two methods perform similarly. We conclude that the similarity in performance is due to the intrinsic limitation of the noise characteristics of the data. The advantages of our method are that it is slightly more efficient in eliminating spurious detections and is simple to implement. The disadvantage is that it is a manual method of finding sources and so is not practical on datasets much larger than HOPS, or for datasets with extended emission that needs to be characterised. We outline a two-stage method for the most efficient means of finding masers, using {\sc Duchamp}.Comment: 8 pages, 1 table, 4 figures. Accepted for publication in PASA special issue on Source Finding & Visualisatio

    Determination of intercontinental baselines and Earth orientation using VLBI

    Get PDF
    A series of experiments was conducted during the last decade to explore the capability of very long baseline interferometry (VLBI) to measure the crustal and rotational motions of the Earth with accuracies at the centimeter level. The observing stations are those of NASA's Deep Space Network in California, Spain and Australia. A multiparameter fit to the observed values of delay and delay rate yields radio source positions, polar motion, universal time, the precession constant, baseline vectors, and solid Earth tides. Source positions are obtained with formal errors of the order of 0''.01. UT1-UTC and polar motion are determined at 49 epochs, with formal error estimates for the more recent data of 0.5 msec for UT1-UTC and 2 to 6 mas for polar motion. Intercontinental baseline lengths are determined with formal errors of 5 to 10 cm. The Love numbers and Earth tide phase lag agree with the commonly accepted values

    A Superconducting Beam Line

    Get PDF

    Squeezed single-atom laser in a photonic crystal

    Get PDF
    We study non-classical and spectral properties of a strongly driven single-atom laser engineered within a photonic crystal that facilitates a frequency-dependent reservoir. In these studies, we apply a dressed atom model approach to derive the master equation of the system and study the properties of the dressed laser under the frequency dependent transition rates. By going beyond the secular approximation in the dressed-atom cavity field interaction, we find that if, in addition, the non-secular terms are included into the dynamics of the system, then non-linear processes can occur that lead to interesting new aspects of cavity field behavior. We calculate variances of the quadrature phase amplitudes and the incoherent part of the spectrum of the cavity field and show that they differ qualitatively from those observed under the secular approximation. In particular, it is found that the non-linear processes lead to squeezing of the fluctuations of the cavity field below the quantum shot noise limit. The squeezing depends on the relative population of the dressed states of the system and is found only if there is no population inversion between the dressed states. Furthermore, we find a linewidth narrowing below the quantum limit in the spectrum of the cavity field that is achieved only when the secular approximation is not made. An interpretation of the linewidth narrowing is provided in terms of two phase dependent noise (squeezing) spectra that make up the incoherent spectrum. We establish that the linewidth narrowing is due squeezing of the fluctuations in one quadrature phase components of the cavity field.Comment: 12 pages, 6 figure

    VLBI measurements of radio source positions at the Jet Propulsion Laboratory

    Get PDF
    The results of approximately 1300 observations of 67 radio sources are presented. Most of the measurements were made at the stations of the Deep Space Network in California, Spain, and Australia at wavelengths of 13.1 and 3.6 cm, between 1971 and 1978. The formal errors in the derived source positions are generally in the neighborhood of 0.01 seconds of arc and the positions agree fairly well with those previously published

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Broadband, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN

    Get PDF
    We present the results from a broadband (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the ATCA, selected to be highly linearly polarized at 1.4 GHz. We use a general purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or 'RM components' of a source. Overall, 37%/52%/11% of sources are best fit by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index, and a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.Comment: 29 pages (including Appendix), 28 figures, 7 tables. Accepted for publication in MNRA

    Resonant Metalenses for Breaking the Diffraction Barrier

    Full text link
    We introduce the resonant metalens, a cluster of coupled subwavelength resonators. Dispersion allows the conversion of subwavelength wavefields into temporal signatures while the Purcell effect permits an efficient radiation of this information in the far-field. The study of an array of resonant wires using microwaves provides a physical understanding of the underlying mechanism. We experimentally demonstrate imaging and focusing from the far-field with resolutions far below the diffraction limit. This concept is realizable at any frequency where subwavelength resonators can be designed.Comment: 4 pages, 3 figure

    Interacting Large-Scale Magnetic Fields and Ionised Gas in the W50/SS433 System

    Get PDF
    The W50/SS433 system is an unusual Galactic outflow-driven object of debatable origin. We have used the Australia Telescope Compact Array (ATCA) to observe a new 198 pointing mosaic, covering 3∘×2∘3^\circ \times 2^\circ, and present the highest-sensitivity full-Stokes data of W50 to date using wide-field, wide-band imaging over a 2 GHz bandwidth centred at 2.1 GHz. We also present a complementary Hα\alpha mosaic created using the Isaac Newton Telescope Photometric Hα\alpha Survey of the Northern Galactic Plane (IPHAS). The magnetic structure of W50 is found to be consistent with the prevailing hypothesis that the nebula is a reanimated shell-like supernova remnant (SNR), that has been re-energised by the jets from SS433. We observe strong depolarization effects that correlate with diffuse Hα\alpha emission, likely due to spatially-varying Faraday rotation measure (RM) fluctuations of ≥48\ge48 to 61 rad m−2^{-2} on scales ≤4.5\le4.5 to 6 pc. We also report the discovery of numerous, faint, Hα\alpha filaments that are unambiguously associated with the central region of W50. These thin filaments are suggestive of a SNR's shock emission, and almost all have a radio counterpart. Furthermore, an RM-gradient is detected across the central region of W50, which we interpret as a loop magnetic field with a symmetry axis offset by ≈90∘\approx90^{\circ} to the east-west jet-alignment axis, and implying that the evolutionary processes of both the jets and the SNR must be coupled. A separate RM-gradient is associated with the termination shock in the Eastern ear, which we interpret as a ring-like field located where the shock of the jet interacts with the circumstellar medium. Future optical observations will be able to use the new Hα\alpha filaments to probe the kinematics of the shell of W50, potentially allowing for a definitive experiment on W50's formation history.Comment: Submitted to MNRA
    • …
    corecore