2,854 research outputs found

    A comparison of feeding reconstituted and dried milk upon the growth and carcass composition of calves

    Get PDF
    1. The live-weight gain, carcass weight, edible carcass composition, efficiency of food conversion, and roughage intake were measured in three groups of calves fed for 87 d. After a 3-week feeding period on a common regimen, one group of calves was weaned on to a diet of dry whole-milk powder and chopped lucerne, the second group received a similar diet except that the whole-milk powder was reconstituted to a liquid milk, containing 12–15% dry matter. The third group was given the diet in the same manner as the second group except that the chopped lucerne was available ad lib. 2. The mean live-weight gains for the three groups were 37.7, 47.6 and 52.7 kg respectively, the differences between the dry-fed and the liquid-fed groups being highly significant. 3. Energy and nitrogen accretion in the edible carcass and efficiency of food conversion were superior in the second and third groups. 4. The third group ate larger quantities of roughage, though the difference did not reach significance. 5. The reasons for the superiority of the liquid milk diet are discussed in relation to the avoidance of ruminal fermentation of the milk

    Comparison of two methods for describing the strain profiles in quantum dots

    Full text link
    The electronic structure of interfaces between lattice-mismatched semiconductor is sensitive to the strain. We compare two approaches for calculating such inhomogeneous strain -- continuum elasticity (CE, treated as a finite difference problem) and atomistic elasticity (AE). While for small strain the two methods must agree, for the large strains that exist between lattice-mismatched III-V semiconductors (e.g. 7% for InAs/GaAs outside the linearity regime of CE) there are discrepancies. We compare the strain profile obtained by both approaches (including the approximation of the correct C_2 symmetry by the C_4 symmetry in the CE method), when applied to C_2-symmetric InAs pyramidal dots capped by GaAs.Comment: To appear in J. Appl. Physic

    Growth and optical properties of self-assembled InGaAs Quantum Posts

    Full text link
    We demonstrate a method to grow height controlled, dislocation-free InGaAs quantum posts (QPs) on GaAs by molecular beam epitaxy (MBE) which is confirmed by structural investigations. The optical properties are compared to realistic 8-band k.p calculations of the electronic structure which fully account for strain and the structural properties of the QP. Using QPs embedded in n-i-p junctions we find wide range tunability of the interband spectrum and giant static dipole moments.Comment: Proccedings paper for MSS-13, 7 pages, 4 figure

    Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations

    Full text link
    The electronic structure of pyramidal shaped InAs/GaAs quantum dots is calculated using an eight-band strain dependent kâ‹…p\bf k\cdot p Hamiltonian. The influence of strain on band energies and the conduction-band effective mass are examined. Single particle bound-state energies and exciton binding energies are computed as functions of island size. The eight-band results are compared with those for one, four and six bands, and with results from a one-band approximation in which m(r) is determined by the local value of the strain. The eight-band model predicts a lower ground state energy and a larger number of excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps

    Quantum wires from coupled InAs/GaAs strained quantum dots

    Full text link
    The electronic structure of an infinite 1D array of vertically coupled InAs/GaAs strained quantum dots is calculated using an eight-band strain-dependent k-dot-p Hamiltonian. The coupled dots form a unique quantum wire structure in which the miniband widths and effective masses are controlled by the distance between the islands, d. The miniband structure is calculated as a function of d, and it is shown that for d>4 nm the miniband is narrower than the optical phonon energy, while the gap between the first and second minibands is greater than the optical phonon energy. This leads to decreased optical phonon scattering, providing improved quantum wire behavior at high temperatures. These miniband properties are also ideal for Bloch oscillation.Comment: 5 pages revtex, epsf, 8 postscript figure

    The GEOS-3 orbit determination investigation

    Get PDF
    The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution

    Classroom assessment and education: challenging the assumptions of socialisation and instrumentality

    Get PDF
    The opportunity offered by the Umea Symposium to probe the intersection of quality and assessment immediately brings into focus a wider issue – that of the quality of education which assessment aspires to support. Prompted by recent research into formative assessment in Scottish primary school contexts, the paper explores how formative assessment has become associated with an overly benign understanding of learning which misrecognises the possibility of undesirable learning and does not seem to address the inherently political nature of education. Having illuminated the potential inequities of formative assessment practices, the paper then asks what role formative assessment might play to support an understanding of education that is not simply about the transmission of traditional social norms, but also aspires to illuminate their social construction and their political nature

    Diversity, genetic structure and evidence of outcrossing in British populations of the rock fern Adiantum capillus-veneris using microsatellites

    Get PDF
    Microsatellites were isolated and a marker system was developed in the fern Adiantum capillus-veneris. Polymorphic markers were then used to study the genetic diversity and structure of populations within the UK and Ireland where this species grows at the northern edge of its range, requiring a specific rock habitat and limited to a few scattered populations. Three dinucleotide loci detected a high level of diversity (23 alleles and 28 multilocus genotypes) across the UK and Ireland, with nearly all variation partitioned among rather than within populations. Of 17 populations represented by multiple samples, all except four were monomorphic. Heterozygosity was detected in three populations, all within Glamorgan, Wales (UK), showing evidence of outcrossing. We make inferences on the factors determining the observed levels and patterns of genetic variation and the possible evolutionary history of the populations

    Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots

    Full text link
    Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs) are predicted to exhibit a strong non-parabolic dependence of the interband transition energy on the electric field, which is not encountered in single SAD structures nor in other types of quantum structures. Our study based on an eight-band strain-dependent kâ‹…p{\bf k}\cdot{\bf p} Hamiltonian indicates that this anomalous quantum confined Stark effect is caused by the three-dimensional strain field distribution which influences drastically the hole states in the stacked SAD structures.Comment: 4 pages, 4 figure

    Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot

    Get PDF
    We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study a single self assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that: Single exciton radiative recombination is very weak. Sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetime. Once these few states are fully occupied, broad bands appear due to transitions between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199
    • …
    corecore