611 research outputs found

    MSAT-X electronically steered phased array antenna system

    Get PDF
    A low profile electronically steered phased array was successfully developed for the Mobile Satellite Experiment Program (MSAT-X). The newly invented cavity-backed printed crossed-slot was used as the radiating element. The choice of this element was based on its low elevation angle gain coverage and low profile. A nineteen-way radial type unequal power divider and eighteen three-bit diode phase shifters constitute the beamformer module which is used to scan the beams electronically. A complete hybrid mode pointing system was also developed. The major features of the antenna system are broad coverage, low profile, and fast acquisition and tracking performance, even under fading conditions. Excellent intersatellite isolation (better than 26 dB) was realized, which will provide good quality mobile satellite communication in the future

    Analytical results for the confinement mechanism in QCD_3

    Get PDF
    We present analytical methods for investigating the interaction of two heavy quarks in QCD_3 using the effective action approach. Our findings result in explicit expressions for the static potentials in QCD_3 for long and short distances. With regard to confinement, our conclusion reflects many features found in the more realistic world of QCD_4.Comment: 24 pages, uses REVTe

    Critical Analysis of Baryon Masses and Sigma-Terms in Heavy Baryon Chiral Perturbation Theory

    Full text link
    We present an analysis of the octet baryon masses and the πN\pi N and KNKN σ\sigma--terms in the framework of heavy baryon chiral perturbation theory. At next-to-leading order, O(q3){\cal O}(q^3), knowledge of the baryon masses and σπN(0)\sigma_{\pi N}(0) allows to determine the three corresponding finite low--energy constants and to predict the the two KNKN σ\sigma--terms σKN(1,2)(0)\sigma^{(1,2)}_{KN} (0). We also include the spin-3/2 decuplet in the effective theory. The presence of the non--vanishing energy scale due to the octet--decuplet splitting shifts the average octet baryon mass by an infinite amount and leads to infinite renormalizations of the low--energy constants. The first observable effect of the decuplet intermediate states to the baryon masses starts out at order q4q^4. We argue that it is not sufficient to retain only these but no other higher order terms to achieve a consistent description of the three--flavor scalar sector of baryon CHPT. In addition, we critically discuss an SU(2) result which allows to explain the large shift of σπN(2Mπ2)σπN(0)\sigma_{\pi N}(2M_\pi^2) - \sigma_{\pi N}(0) via intermediate Δ(1232)\Delta (1232) states.Comment: 18 pp, TeX, BUTP-93/05 and CRN-93-0

    Study of Quark Propagator Solutions to the Dyson--Schwinger Equation in a Confining Model

    Get PDF
    We solve the Dyson--Schwinger equation for the quark propagator in a model with singular infrared behavior for the gluon propagator. We require that the solutions, easily found in configuration space, be tempered distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in momentum space, falls off like 1/p21/p^2 as p2+/p^2\rightarrow +/-\infty, and it is truly nonperturbative in that it is singular in the limit that the gluon--quark interaction approaches zero. If the sign of the gluon propagator coefficient is positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced and retarded propagators. These solutions are singular at the origin in momentum space, fall off like 1/p21/p^2 asympotically, exhibit ``resonant--like" behavior at the position of the bare mass of the quark when the mass is large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly approach a linear combination of free--quark, advanced and retarded two--point functions in the limit that the interaction approaches zero. In this sense, these solutions behave in an increasingly ``particle--like" manner as the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions and therefore are not acceptable solutions to the Schwinger--Dyson equation in our model. On this basis we advance several arguments to show that the Fourier--transformable solutions we find are consistent with quark confinement, even though they have singularities on th

    Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    Get PDF
    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable for exposure assessment, which is crucial for estimating health effects in epidemiological and toxicological studies. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).Peer reviewe

    Squeezed Gluon Condensate and Quark Confinement in the Global Color Model of QCD

    Full text link
    We discuss how the presence of a squeezed gluon vacuum might lead to quark confinement in the framework of the global colour model of QCD. Using reduced phase space quantization of massive vector theory we construct a Lorentz invariant and colourless squeezed gluon condensate and show that it induces a permanent, nonlocal quark interaction (delta-function in 4-momentum space), which according to Munczek and Nemirovsky might lead to quark confinement. Our approach makes it possible to relate the strength of this effective confining quark interaction to the strength of the physical gluon condensate.Comment: 18 pages LaTeX, to appear in Int. J. Mod. Phys.

    Squeezed gluon vacuum and the global colour model of QCD

    Get PDF
    We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global colour model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.Comment: 13 pages, LaTe

    Nonrelativistic effective Lagrangians

    Full text link
    Chiral perturbation theory is extended to nonrelativistic systems with spontaneously broken symmetry. In the effective Lagrangian, order parameters associated with the generators of the group manifest themselves as effective coupling constants of a topological term, which is gauge invariant only up to a total derivative. In the case of the ferromagnet, a term connected with the Brouwer degree dominates the derivative expansion. The general analysis includes antiferromagnetic magnons and phonons, while the effective field theory of fluids or gases is beyond the scope of the method.Comment: 30 pages, BUTP-93/2

    Momentum dependent quark mass in two-point correlators

    Full text link
    A momentum dependent quark mass may be incorporated into a quark model in a manner consistent with dynamically broken chiral symmetry. We use this to study the high Q2Q^2 behavior of the vector, axialvector, scalar and pseudoscalar two-point correlation functions. Expanding the results to order 1/Q61/Q^6, we show the correspondence between the dynamical quark mass and the vacuum condensates which appear in the operator product expansion of QCD. We recover the correct leading logarithmic Q2Q^2 dependence of the various terms in the OPE, but we also find substantial subleading corrections which are numerically huge in a specific case. We conclude by using the vector minus axialvector correlator to estimate the π+π0\pi^+ - \pi^0 electromagnetic mass difference.Comment: 18 pages, LaTeX, figures in accompanying uuencoded postscript file. Published version. References adde

    Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    Full text link
    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.Comment: 4 pages, no figures; version to be published in Physical Review Letter
    corecore