628 research outputs found

    Wild-type huntingtin regulates human macrophage function

    Get PDF
    The huntingtin (HTT) protein in its mutant form is the cause of the inherited neurodegenerative disorder, Huntington\u27s disease. Beyond its effects in the central nervous system, disease-associated mutant HTT causes aberrant phenotypes in myeloid-lineage innate immune system cells, namely monocytes and macrophages. Whether the wild-type form of the protein, however, has a role in normal human macrophage function has not been determined. Here, the effects of lowering the expression of wild-type (wt)HTT on the function of primary monocyte-derived macrophages from healthy, non-disease human subjects were examined. This demonstrated a previously undescribed role for wtHTT in maintaining normal macrophage health and function. Lowered wtHTT expression was associated, for instance, with a diminished release of induced cytokines, elevated phagocytosis and increased vulnerability to cellular stress. These may well occur by mechanisms different to that associated with the mutant form of the protein, given an absence of any effect on the intracellular signalling pathway predominantly associated with macrophage dysfunction in Huntington\u27s disease

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    A Model for Liver Homeostasis Using Modified Mean-Reverting Ornstein–Uhlenbeck Process

    Get PDF
    Short of a liver biopsy, hepatic disease and drug-induced liver injury are diagnosed and classified from clinical findings, especially laboratory results. It was hypothesized that a healthy hepatic dynamic equilibrium might be modelled by an Ornstein–Uhlenbeck (OU) stochastic process, which might lead to more sensitive and specific diagnostic criteria. Using pooled data from healthy volunteers in pharmaceutical clinical trials, this model was applied using maximum likelihood (ML) methods. It was found that the exponent of the autocorrelation function was proportional to the square root of time rather than time itself, as predicted by the OU model. This finding suggests a stronger autocorrelation than expected and may have important implications regarding the use of laboratory testing in clinical diagnosis, in clinical trial design, and in monitoring drug safety. Besides rejecting the OU hypothesis for liver test homeostasis, this paper presents ML estimates for the multivariate Gaussian distribution for healthy adult males. This work forms the basis for a new approach to mathematical modelling to improve both the sensitivity and specificity of clinical measurements over time

    In-Situ Nuclear Magnetic Resonance Investigation of Strain, Temperature, and Strain-Rate Variations of Deformation-Induced Vacancy Concentration in Aluminum

    Get PDF
    Critical strain to serrated flow in solid solution alloys exhibiting dynamic strain aging (DSA) or Portevin–LeChatelier effect is due to the strain-induced vacancy production. Nuclear magnetic resonance (NMR) techniques can be used to monitor in situ the dynamical behavior of point and line defects in materials during deformation, and these techniques are nondestructive and noninvasive. The new CUT-sequence pulse method allowed an accurate evaluation of the strain-enhanced vacancy diffusion and, thus, the excess vacancy concentration during deformation as a function of strain, strain rate, and temperature. Due to skin effect problems in metals at high frequencies, thin foils of Al were used and experimental results correlated with models based on vacancy production through mechanical work (vs thermal jogs), while in situ annealing of excess vacancies is noted at high temperatures. These correlations made it feasible to obtain explicit dependencies of the strain-induced vacancy concentration on test variables such as the strain, strain rate, and temperature. These studies clearly reveal the power and utility of these NMR techniques in the determination of deformation-induced vacancies in situ in a noninvasive fashion.

    The relationship between the perception of distributed leadership in secondary schools and teachers' and teacher leaders' job satisfaction and organizational commitment

    Get PDF
    This study investigates the relation between distributed leadership, the cohesion of the leadership team, participative decision-making, context variables, and the organizational commitment and job satisfaction of teachers and teacher leaders. A questionnaire was administered to teachers and teacher leaders (n=1770) from 46 large secondary schools. Multiple regression analyses and path analyses revealed that the study variables explained significant variance in organizational commitment. The degree of explained variance for job satisfaction was considerably lower compared to organizational commitment. Most striking was that the cohesion of the leadership team and the amount of leadership support was strongly related to organizational commitment, and indirectly to job satisfaction. Decentralization of leadership functions was weakly related to organizational commitment and job satisfaction

    Work-Unit Absenteeism: Effects of Satisfaction, Commitment, Labor Market Conditions, and Time

    Get PDF
    Prior research is limited in explaining absenteeism at the unit level and over time. We developed and tested a model of unit-level absenteeism using five waves of data collected over six years from 115 work units in a large state agency. Unit-level job satisfaction, organizational commitment, and local unemployment were modeled as time-varying predictors of absenteeism. Shared satisfaction and commitment interacted in predicting absenteeism but were not related to the rate of change in absenteeism over time. Unit-level satisfaction and commitment were more strongly related to absenteeism when units were located in areas with plentiful job alternatives

    The Relationship Between HR Practices and Firm Performance: Examining Causal Order

    Get PDF
    Significant research attention has been devoted to examining the relationship between HR practices and firm performance, and the research support has assumed HR as the causal variable. Using data from 45 business units (with 62 data points), this study examines how measures of HR practices correlate with past, concurrent, and future operational performance measures. The results indicate that correlations with performance measures at all three times are both high and invariant, and that controlling for past or concurrent performance virtually eliminates the correlation of HR with future performance. Implications are discussed

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Protein Signature of Lung Cancer Tissues

    Get PDF
    Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment

    Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: New structural-functional paradigms for synaptic function

    Get PDF
    Published data are reviewed along with our own data on synaptic plasticity and rearrangements of synaptic organelles in the central nervous system. Contemporary laser scanning and confocal microscopy techniques are discussed, along with the use of serial ultrathin sections for in vivo and in vitro studies of dendritic spines, including those addressing relationships between morphological changes and the efficiency of synaptic transmission, especially in conditions of the long-term potentiation model. Different categories of dendritic spines and postsynaptic densities are analyzed, as are the roles of filopodia in originating spines. The role of serial ultrathin sections for unbiased quantitative stereological analysis and three-dimensional reconstruction is assessed. The authors data on the formation of more than two synapses on single mushroom spines on neurons in hippocampal field CA1 are discussed. Analysis of these data provides evidence for new paradigms in both the organization and functioning of synapses
    • …
    corecore