1,881 research outputs found

    Imminence in Refugee and Human Rights Law: A Misplaced Notion for International Protection

    Get PDF
    This article is the first scholarly output of a major research project examining the notion of imminence in the law on international protection. It is the first piece of scholarship to identify an emerging trend, namely the introduction of imminence—whether invoked implicitly or explicitly—as a potential barrier to refugee status or complementary protection. The article analyses the jurisprudence of relevant international bodies and courts and critiques the validity of this notion as a tool for assessing States’ protection obligations

    A well-founded fear of being persecuted ... but when?

    Get PDF
    It is well established that the ‘well-founded fear’ test in refugee law requires a prospective assessment of potential future harm. Yet, the requisite timeframe involved in this test is rarely examined. Analysis of jurisprudence across a wide range of jurisdictions reveals that Australian courts have been unusually cognisant of the question of timing of harm. Indeed, they have been particularly insistent that a flexible and longer-range assessment is appropriate, encapsulated by the ‘reasonably foreseeable future’ test. This article provides an in-depth analysis of the principles set out by Australian courts, and identifies particularly challenging contexts in which timing has played an important role. It also assesses the extent to which decision-makers at the tribunal level adhere to the flexible approach formulated by the judiciary. It is hoped that our analysis of Australian jurisprudence may prove helpful in other jurisdictions in which the issue of timing of harm is equally pertinent but far less developed

    The cost of a small membrane bioreactor

    Get PDF
    The individual cost contributions to the mechanical components of a small membrane bioreactor (MBR) (100–2,500 m3/d flow capacity) are itemised and collated to generate overall capital and operating costs (CAPEX and OPEX) as a function of size. The outcomes are compared to those from previously published detailed cost studies provided for both very small containerised plants (<40 m3/day capacity) and larger municipal plants (2,200–19,000 m3/d). Cost curves, as a function of flow capacity, determined for OPEX, CAPEX and net present value (NPV) based on the heuristic data used indicate a logarithmic function for OPEX and a power-based one for the CAPEX. OPEX correlations were in good quantitative agreement with those reported in the literature. Disparities in the calculated CAPEX trend compared with reported data were attributed to differences in assumptions concerning cost contributions. More reasonable agreement was obtained with the reported membrane separation component CAPEX data from published studies. The heuristic approach taken appears appropriate for small-scale MBRs with minimal costs associated with installation. An overall relationship of net present value = (a tb)Q(−c lnt+d) was determined for the net present value where a = 1.265, b = 0.44, c = 0.00385 and d = 0.868 according to the dataset employed for the analysis

    Compositional Explanation of Types and Algorithmic Debugging of Type Errors

    Get PDF
    The type systems of most typed functional programming languages are based on the Hindley-Milner type system. A practical problem with these type systems is that it is often hard to understand why a program is not type correct or a function does not have the intended type. We suggest that at the core of this problem is the difficulty of explaining why a given expression has a certain type. The type system is not defined compositionally. We propose to explain types using a variant of the Hindley-Milner type system that defines a compositional type explanation graph of principal typings. We describe how the programmer understands types by interactive navigation through the explanation graph. Furthermore, the explanation graph can be the foundation for algorithmic debugging of type errors, that is, semi-automatic localisation of the source of a type error without even having to understand the type inference steps. We implemented a prototype of a tool to explore the usefulness of the proposed methods

    The preparation and characterisation of monomeric and linked metal carbonyl clusters containing the closo-Si2Co4 pseudo-octahedral core

    Get PDF
    PhSiH3 reacts with [Co₄(CO)₁₂] at 50 °C in hydrocarbon solvents to give [(µ₄-SiPh)₂Co₄(CO)₁₁], 2c, shown by an X-ray crystal structure determination to have a pseudo-octahedral Si₂Co₄ core. Substituted aryl-silanes behaved similarly. Mixtures of PhSiH₃, H₃SiC₆H₄SiH₃ and [Co₄(CO)₁₂] in a ca. 2 1 2 ratio gave the dimeric cluster [{Co₄(µ₄-SiPh)(CO)₁₁Si}₂C₆H₄], 3a, which has the two Si₂Co₄ cores linked by a C₆H₄ group to give a rigid molecule which an X-ray structure analysis shows to be over 23 Å long. Related dimers linked by –(CH₂)₈– groups were isolated from mixtures of PhSiH₃, α ,ω-(H₃Si)₂(CH₂)₈ and [Co₄(CO)₁₂]. Electrochemical studies show the two cluster units in 3a do not interact electronically

    Electrochemically generated bimetallic reductive mediator Cu1+ [Ni2+ (CN) 4] 1− for the degradation of CF4 to ethanol by electro-scrubbing

    Get PDF
    Remediation of electronic gas CF4 using commercially available technologies results in another kind of greenhouse gas and corrosive side products. This investigation aimed to develop CF4 removal at room temperature with formation of useful product by attempting an electrogenerated Cu1+[Ni2+(CN)4]1− mediator. The initial electrolysis of the bimetallic complex at the anodized Ti cathode demonstrated Cu1+[Ni2+(CN)4]1− formation, which was confirmed by additional electron spin resonance results. The degradation of CF4 followed mediated electrochemical reduction by electrogenerated Cu1+[Ni2+(CN)4]1−. The removal efficiency of CF4 of 95% was achieved by this electroscrubbing process at room temperature. The spectral results of online and offline Fourier transform infrared analyzer, either in gas or in solution phase, demonstrated that the product formed during the removal of CF4 by electrogenerated Cu1+[Ni2+(CN)4]1− by electroscrubbing was ethanol (CH3CH2OH), with a small amount of trifluoroethane (CF3CH3) intermediate

    delta C-13 Analysis of Mars Analog Carbonates Using Evolved Gas Cavity - Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard Expedition (AMASE)

    Get PDF
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM
    corecore