636 research outputs found

    Integrated out-of-hours care arrangements in England: observational study of progress towards single call access via NHS Direct and impact on the wider health system

    Get PDF
    Objectives: To assess the extent of service integration achieved within general practice cooperatives and NHS Direct sites participating in the Department of Health’s national “Exemplar Programme” for single call access to out-of-hours care via NHS Direct. To assess the impact of integrated out-of-hours care arrangements upon general practice cooperatives and the wider health system (use of emergency departments, 999 ambulance services, and minor injuries units). Design: Observational before and after study of demand, activity, and trends in the use of other health services. Setting: Thirty four English general practice cooperatives with NHS Direct partners (“exemplars”) of which four acted as “case exemplars”. Also 10 control cooperatives for comparison. Main Outcome Measures: Extent of integration achieved (defined as the proportion of hours and the proportion of general practice patients covered by integrated arrangements), patterns of general practice cooperative demand and activity and trends in use of the wider health system in the first year. Results: Of 31 distinct exemplars 21 (68%) integrated all out-of-hours call management by March 2004. Nine (29%) established single call access for all patients. In the only case exemplar where direct comparison was possible, cooperative nurse telephone triage before integration completed a higher proportion of calls with telephone advice than did NHS Direct afterwards (39% v 30%; p<0.0001). The proportion of calls completed by NHS Direct telephone advice at other sites was lower. There is evidence for transfer of demand from case exemplars to 999 ambulance services. A downturn in overall demand for care seen in two case exemplars was also seen in control sites. Conclusion: The new model of out-of-hours care was implemented in a variety of settings across England by new partnerships between general practice cooperatives and NHS Direct. Single call access was not widely implemented and most patients needed to make at least two telephone calls to contact the service. In the first year, integration may have produced some reduction in total demand, but this may have been accompanied by shifts from one part of the local health system to another. NHS Direct demonstrated capability in handling calls but may not currently have sufficient capacity to support national implementation

    Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry

    Full text link
    With the discovery of massive neutron stars such as PSR J1614-2230, the question has arisen whether exotic matter such as hyperons can exist in the neutron star core. We examine the conditions under which hyperons can exist in massive neutron stars. We consistently investigate the vector meson-hyperon coupling, going from SU(6) quark model to a broader SU(3) symmetry. We propose that the maximum neutron star mass decreases linearly with the strangeness content f_s of the neutron star core as M_max(f_s) = M_max(0) - 0.6 M_solar (f_s/0.1), which seems to be independent of the underlying nuclear equation of state and the vector baryon-meson coupling scheme. Thus, pulsar mass measurements can be used to constrain the hyperon fraction in neutron stars.Comment: 13 pages, 10 figure

    Computation of Neutron Star Structure Using Modern Equation of State

    Full text link
    Using the modern equations of state derived from microscopic calculations, we have calculated the neutron star structure. For the neutron star, we have obtained a minimum mass about 0.1M0.1 {\rm M_{\odot}} which is nearly independent of the equation of state, and a maximum mass between 1.47M1.47 {\rm M_{\odot}} and 1.98M1.98 {\rm M_{\odot}} which is strongly dependent on the equation of state. It is shown that among the equations of state of neutron star matter which we have used, the stiffest one leads to higher maximum mass and radius and lower central density. It is seen that the given maximum mass for the Reid-93 equation of state shows a good consistency with the accurate observations of radio pulsars. We have indicated that the thickness of neutron star crust is very small compared to the predicted neutron star radius.Comment: 16 pages, 6 figure

    The effect of neutrinos on the initial fireballs in gamma-ray bursts

    Full text link
    We investigate the fate of very compact, sudden energy depositions that may lie at the origin of gamma-ray bursts. Following on from the work of Cavallo and Rees (1978), we take account of the much higher energies now believed to be involved. The main effect of this is that thermal neutrinos are present and energetically important. We show that these may provide sufficient cooling to tap most of the explosion energy. However, at the extreme energies usually invoked for gamma-ray bursts, the neutrino opacity suffices to prevent dramatic losses, provided that the heating process is sufficiently fast. In a generic case, a few tens of percent of the initial fireball energy will escape as an isotropic millisecond burst of thermal neutrinos with a temperature of about 60 MeV, which is detectable for nearby gamma-ray bursts and hypernovae. For parameters we find most likely for gamma-ray burst fireballs, the dominant processes are purely leptonic, and thus the baryon loading of the fireball does not affect our conclusions.Comment: 10 pages, 4 figures. To be submitted to MNRA

    Isospin-rich nuclei in neutron star matter

    Get PDF
    Stability of nuclei beyond the drip lines in the presence of an enveloping gas of nucleons and electrons, as prevailing in the inner crust of a neutron star, is studied in the temperature-dependent Thomas-Fermi framework. A limiting asymmetry in the isospin space beyond which nuclei cannot exist emerges from the calculations. The ambient conditions like temperature, baryon density and neutrino concentration under which these exotic nuclear systems can be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and 10 PS-files for figure

    Equation of state and phase transitions in asymmetric nuclear matter

    Get PDF
    The structure of the 3-dimension pressure-temperature-asymmetry surface of equilibrium of the asymmetric nuclear matter is studied within the thermal Thomas-Fermi approximation. Special attention is paid to the difference of the asymmetry parameter between the boiling sheet and that of the condensation sheet of the surface of equilibrium. We derive the condition of existence of the regime of retrograde condensation at the boiling of the asymmetric nuclear matter. We have performed calculations of the caloric curves in the case of isobaric heating. We have shown the presence of the plateau region in caloric curves at the isobaric heating of the asymmetric nuclear matter. The shape of the caloric curve depends on the pressure and is sensitive to the value of the asymmetry parameter. We point out that the experimental value of the plateau temperature T \approx 7 MeV corresponds to the pressure P = 0.01 MeV/fm^3 at the isobaric boiling.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Isospin-rich nuclei in neutron star matter

    Get PDF
    Stability of nuclei beyond the drip lines in the presence of an enveloping gas of nucleons and electrons, as prevailing in the inner crust of a neutron star, is studied in the temperature-dependent Thomas-Fermi framework. A limiting asymmetry in the isospin space beyond which nuclei cannot exist emerges from the calculations. The ambient conditions like temperature, baryon density and neutrino concentration under which these exotic nuclear systems can be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and 10 PS-files for figure

    The Equation of State of Neutron-Star Matter in Strong Magnetic Fields

    Get PDF
    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach which permits the study of several models which differ in their behavior at high density. Effects of Landau quantization in ultra-strong magnetic fields (B>1014B>10^{14} Gauss) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>1018B>10^{18} Gauss that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultra-strong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of H/B|H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields.Comment: 40 pages, 7 figures, accepted for publication in Ap

    Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?

    Get PDF
    Two-dimensional hydrodynamic simulations of stellar core-collapse with and without rotation are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem of the neutrino-driven explosion mechanism.Comment: PRL submitted; 3 eps figures, 1 colored, high-quality available upon reques

    A numerical study of the r-mode instability of rapidly rotating nascent neutron stars

    Full text link
    The first results of numerical analysis of classical r-modes of {\it rapidly} rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity are numerically solved without the slow rotation approximation. A critical curve of gravitational wave emission induced instability which restricts the rotational frequencies of hot young neutron stars is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the `evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning-down proceed. Rotational frequencies of 1.4M1.4M_{\odot} stars suffering from this instability decrease to around 100Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
    corecore