92 research outputs found
On the importance of discharge variability in the morphodynamic modeling of rivers
River morphodynamics and sediment transportRiver morphology and morphodynamic
Interplay of erythropoietin, fibroblast growth factor 23, and erythroferrone in patients with hereditary hemolytic anemia
Recently, erythropoietin (EPO) was identified as regulator of fibroblast growth factor 23 (FGF23). Proteolytic cleavage of biologically active intact FGF23 (iFGF23) results in the formation of C-terminal fragments (cFGF23). An increase in cFGF23 relative to iFGF23 suppresses FGF receptor signaling by competitive inhibition. EPO lowers the i:cFGF23 ratio, thereby overcoming iFGF23-mediated suppression of erythropoiesis. We investigated EPO-FGF23 signaling and levels of erythroferrone (ERFE) in 90 patients with hereditary hemolytic anemia (www.trialregister.nl [NL5189]). We show, for the first time, the importance of EPO-FGF23 signaling in hereditary hemolytic anemia: there was a clear correlation between total FGF23 and EPO levels (r = +0.64; 95% confidence interval [CI], 0.09-0.89), which persisted after adjustment for iron load, inflammation, and kidney function. There was no correlation between iFGF23 and EPO. Data are consistent with a low i:cFGF23 ratio. Therefore, as expected, we report a correlation between EPO and ERFE in a diverse set of hereditary hemolytic anemias (r = +0.47; 95% CI, 0.14-0.69). There was no association between ERFE and total FGF23 or iFGF23, which suggests that ERFE does not contribute to the connection between FGF23 and EPO. These findings open a new area of research and might provide potentially new druggable targets with the opportunity to ameliorate ineffective erythropoiesis and the development of disease complications in hereditary hemolytic anemias
Histopathological changes in the reproductive system (ovaries and testes) of Oreochromis mossambicus following exposure to DDT
A b s t r a c t This study assesses the effects of 1,1-bis (4-chlorophenyl)-2,2,2-trichloroethane (DDT) on the reproduction and gonadal histology of adult Mozambique tipalia (Oreochromis mossambicus). The fish were allowed to breed, following exposure to 2 and 5 jig/l of waterborne technical-grade DDT for 40 days. Fertilized eggs were artificially incubated. In the 5 jig/l exposure, posthatch survival was significantly lower, and prevalence of larval skeletal deformities significantly higher, compared to the control (p<0.05). Incomplete axial development was the common gross deformity in posthatch larvae, caused by failure to develop chondroblasts posterior to the buccopharyngeal cavity. There were no significant differences in the gonadosomatic index of exposed and non-exposed male and female adults. The exposure caused increased oocyte atresia in the ovaries and disorganization of seminiferous lobules in the testes of adults. DDT exposure reduced survival and increased deformities in larvae, at levels that did not cause severe histopathological changes to parental gonads
Threat of Hantavirus Pulmonary Syndrome to Field Biologists Working with Small Mammals
Field biologists should use personal protective equipment appropriate for their activities
The Decline of Early Retirement Pathways in the Netherlands: An Empirical Analysis for the Health Care Sector
Early retirement schemes and disability insurance in the Netherlands have both been reformed during the past decades. The reforms have increased incentives to continue working and have decreased the substitution between early retirement and disability. This study investigates the impact of the reforms on labour market exit probabilities. We use administrative data for workers in the Dutch health care sector between 1999 and 2006. We estimate a multinomial Logit model for transitions out of the labour force. The empirical results suggest that the reforms have been effective, as the labour market participation rate of the elderly has increased. The concept of substitute pathways into retirement seems less relevant today as the results confirm that disability insurance is closed off as an early retirement exit route
Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies
BACKGROUND: SFTS virus (SFTSV) is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS) in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs) recognized the nucleocapsid (N) protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection
Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus
Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al
Age and sex influence marmot antipredator behavior during periods of heightened risk
Animals adjust their antipredator behavior according to environmental variation in risk, and to account for their ability to respond to threats. Intrinsic factors that influence an animal’s ability to respond to predators (e.g., age, body condition) should explain variation in antipredator behavior. For example, a juvenile might allocate more time to vigilance than an adult because mortality as a result of predation is often high for this age class; however, the relationship between age/vulnerability and antipredator behavior is not always clear or as predicted. We explored the influence of intrinsic factors on yellow-bellied marmot (Marmota flaviventris) antipredator behavior using data pooled from 4 years of experiments. We hypothesized that inherently vulnerable animals (e.g., young, males, and individuals in poor condition) would exhibit more antipredator behavior prior to and immediately following conspecific alarm calls. As expected, males and yearlings suppressed foraging more than females and adults following alarm call playbacks. In contrast to predictions, animals in better condition respond more than animals in below average condition. Interestingly, these intrinsic properties did not influence baseline time budgets; animals of all ages, sexes, and condition levels devoted comparable amounts of time to foraging prior to alarm calls. Our results support the hypothesis that inherent differences in vulnerability influence antipredator behavior; furthermore, it appears that a crucial, but poorly acknowledged, interaction exists between risk and state-dependence. Elevated risk may be required to reveal the workings of state-dependent behavior, and studies of antipredator behavior in a single context may draw incomplete conclusions about age- or sex-specific strategies
- …