2,118 research outputs found

    Climate dynamics experiments using a GCM simulations

    Get PDF
    The study of surface-atmosphere interactions has begun with studies of the effect of altering the ocean and land boundaries. A ten year simulation of global climate using observed sea surface temperature anomalies has begun using the NCAR Community Climate Model (CCM1). The results for low resolution (R15) were computed for the first 8 years of the simulation and compared with the observed surface temperatures and the MSU (Microwave Sounding Unit) observations of tropospheric temperature. A simulation at higher resolution (T42) was done to ascertain the effect of interactive soil hydrology on the system response to an El Nino sea surface temperature perturbation. Initial analysis of this simulations was completed

    Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4

    Get PDF
    We present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background source (i.e., a galaxy rather than a quasar). Using longslit spectroscopy of the foreground galaxy, we observe spatially extended H alpha emission with circular rotation velocity v=270 km/s. Using echelle spectroscopy of the background galaxy, we detect Mg II and Fe II absorption lines at impact parameter rho=27 kpc that are blueshifted from systemic in the sense of the foreground galaxy's rotation. The strongest absorber EW(2796) = 0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight velocity dispersion (sigma=17 km/s) that are consistent with the observed properties of extended H I disks in the local universe. Our analysis of the rotation curve also suggests that this r=30 kpc gaseous disk is warped with respect to the stellar disk. In addition, we detect two weak Mg II absorbers in the halo with small velocity dispersions (sigma<10 km/s). While the exact geometry is unclear, one component is consistent with an extraplanar gas cloud near the disk-halo interface that is co-rotating with the disk, and the other is consistent with a tidal feature similar to the Magellanic Stream. We can place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the extended nature of the background source. We discuss the implications of these results for models of the geometry and kinematics of gas in the circumgalactic medium.Comment: 14 pages, 6 figures, submitted to ApJ, comments welcom

    The Suggestibility of Older Witnesses

    Get PDF
    The present study compares younger and older adult witnesses’ susceptibility to misinformation. Previous research on the misinformation effect has not measured the relationship between the effect and individuals’ perceptions of their own memory abilities. Such perceptions, and general knowledge of one’s own memory processes, are referred to as “metamemory.” In order to examine the relationship between metamemory and the misinformation effect in the present study, participants also completed a questionnaire that assessed their perception of their memory functioning. Although older persons tend to perceive their memories as being faulty, the correlation between self-assessment of memory abilities and actual memory performance is relatively low (Zelinski, Gilewski, & Thompson, 1980). We therefore predicted that there would be a negligible relationship between participants’ self-assessed memory functioning and whether or not they were susceptible to misinformation, for both younger and older adults

    Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud

    Full text link
    We report measurements of double radiative capture in pionic hydrogen and pionic deuterium. The measurements were performed with the RMC spectrometer at the TRIUMF cyclotron by recording photon pairs from pion stops in liquid hydrogen and deuterium targets. We obtained absolute branching ratios of (3.02±0.27(stat.)±0.31(syst.))×105(3.02 \pm 0.27 (stat.) \pm 0.31 (syst.)) \times 10^{-5} for hydrogen and (1.42±0.120.09(stat.)±0.11(syst.))×105(1.42 \pm ^{0.09}_{0.12} (stat.) \pm 0.11 (syst.)) \times 10^{-5} for deuterium, and relative branching ratios of double radiative capture to single radiative capture of (7.68±0.69(stat.)±0.79(syst.))×105(7.68 \pm 0.69(stat.) \pm 0.79(syst.)) \times 10^{-5} for hydrogen and (5.44±0.460.34(stat.)±0.42(syst.))×105(5.44 \pm^{0.34}_{0.46}(stat.) \pm 0.42(syst.)) \times 10^{-5} for deuterium. For hydrogen, the measured branching ratio and photon energy-angle distributions are in fair agreement with a reaction mechanism involving the annihilation of the incident π\pi^- on the π+\pi^+ cloud of the target proton. For deuterium, the measured branching ratio and energy-angle distributions are qualitatively consistent with simple arguments for the expected role of the spectator neutron. A comparison between our hydrogen and deuterium data and earlier beryllium and carbon data reveals substantial changes in the relative branching ratios and the energy-angle distributions and is in agreement with the expected evolution of the reaction dynamics from an annihilation process in S-state capture to a bremsstrahlung process in P-state capture. Lastly, we comment on the relevance of the double radiative process to the investigation of the charged pion polarizability and the in-medium pion field.Comment: 44 pages, 7 tables, 13 figures, submitted to Phys. Rev.

    Unpolarized structure functions at Jefferson Lab

    Full text link
    Over the past decade measurements of unpolarized structure functions at Jefferson Lab with unprecedented precision have significantly advanced our knowledge of nucleon structure. These have for the first time allowed quantitative tests of the phenomenon of quark-hadron duality, and provided a deeper understanding of the transition from hadron to quark degrees of freedom in inclusive scattering. Dedicated Rosenbluth-separation experiments have yielded high-precision transverse and longitudinal structure functions in regions previously unexplored, and new techniques have enabled the first glimpses of the structure of the free neutron, without contamination from nuclear effects.Comment: 21 pages, 9 figures; typo in Eq. (3) corrected, references added; to appear in J. Phys. Conf. Proc. "New Insights into the Structure of Matter: The First Decade of Science at Jefferson Lab", eds. D. Higinbotham, W. Melnitchouk, A. Thoma

    A Preference for a Sexual Signal Keeps Females Safe

    Get PDF
    Predation is generally thought to constrain sexual selection by female choice and limit the evolution of conspicuous sexual signals. Under high predation risk, females usually become less choosy, because they reduce their exposure to their predators by reducing the extent of their mate searching. However, predation need not weaken sexual selection if, under high predation risk, females exhibit stronger preferences for males that use conspicuous signals that help females avoid their predators. We tested this prediction in the fiddler crab Uca terpsichores by increasing females' perceived predation risk from crab-eating birds and measuring the attractiveness of a courtship signal that females use to find mates. The sexual signal is an arching mound of sand that males build at the openings of their burrows to which they attract females for mating. We found that the greater the risk, the more attractive were males with those structures. The benefits of mate preferences for sexual signals are usually thought to be linked to males' reproductive contributions to females or their young. Our study provides the first evidence that a female preference for a sexual signal can yield direct survival benefits by keeping females safe as they search for mates
    corecore