600 research outputs found

    Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research

    Get PDF
    Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by abnormal development of the central nervous system and whose symptomatology includes cognitive, emotional, sensory, and motor impairments. The identification of causative genetic defects has allowed for creation of transgenic NDD mouse models that have revealed pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, attention, and executive function. Recent advances in technologies for functional circuit mapping, including tissue clearing, viral vector-based tracing methods, and optical readouts of neural activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools have not been widely applied to NDD research. Here, we will review recent findings exploring dopaminergic function in NDD models and discuss the promise of new tools to probe NDD pathophysiology in these circuits

    Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research

    Get PDF
    Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by abnormal development of the central nervous system and whose symptomatology includes cognitive, emotional, sensory, and motor impairments. The identification of causative genetic defects has allowed for creation of transgenic NDD mouse models that have revealed pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, attention, and executive function. Recent advances in technologies for functional circuit mapping, including tissue clearing, viral vector-based tracing methods, and optical readouts of neural activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools have not been widely applied to NDD research. Here, we will review recent findings exploring dopaminergic function in NDD models and discuss the promise of new tools to probe NDD pathophysiology in these circuits

    Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology?

    Get PDF
    Mammalian organs comprise a variety of cells that interact with each other and have distinct biological roles. Access to evaluate and perturb intact biological systems at the cellular and molecular levels is essential to fully understand their functioning in normal and diseased conditions, yet technical limitations have constrained most research to small pieces of tissue. Tissue clearing and optogenetics can help overcome this hurdle: tissue clearing affords optical interrogation of whole organs at the molecular level, and optogenetics enables the scalable control and measurement of cellular activity with light. In this Q&A, we delineate recent advances and practical challenges associated with these two techniques when applied body-wide

    Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA

    Get PDF
    The CheA histidine kinase initiates the signal transduction pathway of bacterial chemotaxis by autophosphorylating a conserved histidine on its phosphotransferase domain (P1). Site-directed mutations of neighboring conserved P1 residues (Glu-67, Lys-48, and His-64) show that a hydrogen-bonding network controls the reactivity of the phospho-accepting His (His-45) in Thermotoga maritima CheA. In particular, the conservative mutation E67Q dramatically reduces phospho-transfer to P1 without significantly affecting the affinity of P1 for the CheA ATP-binding domain. High resolution crystallographic studies revealed that although all mutants disrupt the hydrogen-bonding network to varying degrees, none affect the conformation of His-45. N-15-NMR chemical shift studies instead showed that Glu-67 functions to stabilize the unfavored (NH)-H-delta 1 tautomer of His-45, thereby rendering the N-epsilon 2 imidazole unprotonated and well positioned for accepting the ATP phosphoryl group

    Improving light delivery for optogenetics using wavefront shaping

    Get PDF
    New developments in neuroscience are enabling us to understand the brain at unprecedented temporal and spatial resolution. One of these exciting new techniques is optogenetics, which allows select neuronal populations of the brain to be targeted to express light sensitive ion channels. These enable optical control of the electrophysiological state of the cell, enabling neurons to be activated or deactivated using light. However, due to the strongly scattering nature of biological tissue in the brain, tightly focusing light to a specific voxel is not possible with conventional optical techniques. In this poster we will present the results of our recent work to develop new optical wavefront shaping tools which enable us to focus light inside strongly scattering media and discuss the outlook for such tools for improving light delivery for techniques such as optogenetics. The focus of our work is to use an optical wavefront shaping technology termed Time-Reversed Ultrasound- Encoded (TRUE) focusing [1,2]. This strategy uses ultrasound to form an ultrasonic focus at depths beyond the optical diffusion limit. This ultrasound focus modulates photons passing through it via the acousto-optic effect, shifting their frequency by the ultrasound frequency. Then, by detecting these ultrasound-tagged photons, we can measure the optical wavefront corresponding to the tagged photons and selectively time-reverse this optical field using a technique called Digital Optical Phase Conjugation (DOPC) [3]. This wavefront is then used to send photons back into the scattering tissue in such a way that they travel in a time-reversed fashion, constructively interfering at the location of the ultrasound focus. This allows us to focus light in highly scattering media beyond the optical diffusion limit at ultrasonic resolution (~30 micrometers at 50 MHz). In this poster we will present results from recent work using the TRUE focusing technique to perform optogenetic stimulation. We demonstrate in 300 and 500 micrometer thick living brain slices that the TRUE focusing technique can be used to improve the spatial resolution of optogenetic stimulation compared to conventional optical methods. Furthermore, we will discuss the outlook and challenges facing the development of wavefront shaping techniques such as TRUE focusing for applications in neuroscience and other areas of biotechnology. References: [1] Xu, Xiao, Honglin Liu, and Lihong V. Wang. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature photonics 5.3 (2011): 154-157. [2] Wang, Ying Min, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound- encoded light. Nature communications 3 (2012): 928. [3] Cui, Meng, and Changhuei Yang. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics express 18.4 (2010)

    Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Get PDF
    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine

    Application of Discrete Differential Forms to Spherically Symmetric Systems in General Relativity

    Get PDF
    In this article we describe applications of Discrete Differential Forms in computational GR. In particular we consider the initial value problem in vacuum space-times that are spherically symmetric. The motivation to investigate this method is mainly its manifest coordinate independence. Three numerical schemes are introduced, the results of which are compared with the corresponding analytic solutions. The error of two schemes converges quadratically to zero. For one scheme the errors depend strongly on the initial data.Comment: 22 pages, 6 figures, accepted by Class. Quant. Gra

    Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli

    Get PDF
    Ventral midbrain dopamine (DA) is unambiguously involved in motivation and behavioral arousal, yet the contributions of other DA populations to these processes are poorly understood. Here, we demonstrate that the dorsal raphe nucleus DA neurons are critical modulators of behavioral arousal and sleep-wake patterning. Using simultaneous fiber photometry and polysomnography, we observed time-delineated dorsal raphe nucleus dopaminergic (DRNDA) activity upon exposure to arousal-evoking salient cues, irrespective of their hedonic valence. We also observed broader fluctuations of DRNDA activity across sleep-wake cycles with highest activity during wakefulness. Both endogenous DRNDA activity and optogenetically driven DRNDA activity were associated with waking from sleep, with DA signal strength predictive of wake duration. Conversely, chemogenetic inhibition opposed wakefulness and promoted NREM sleep, even in the face of salient stimuli. Therefore, the DRNDA population is a critical contributor to wake-promoting pathways and is capable of modulating sleep-wake states according to the outside environment, wherein the perception of salient stimuli prompts vigilance and arousal

    Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light

    Get PDF
    Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses

    Self-avoiding fractional Brownian motion - The Edwards model

    Get PDF
    In this work we extend Varadhan's construction of the Edwards polymer model to the case of fractional Brownian motions in Rd\R^d, for any dimension d2d\geq 2, with arbitrary Hurst parameters H1/dH\leq 1/d.Comment: 14 page
    corecore