264 research outputs found

    Theory of plasma contactors in ground-based experiments and low Earth orbit

    Get PDF
    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current

    Access to the second stability region in a high shear, low aspect ratio tokamak

    Get PDF

    Observation of trapped particle modes in a tandem mirror

    Get PDF

    Development of magnetostrictive active members for control of space structures

    Get PDF
    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed

    Stability issues in the Tara tandem mirror experiment

    Get PDF

    The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)

    Full text link
    Automorphic distributions for SL(2) arise as boundary values of modular forms and, in a more subtle manner, from Maass forms. In the case of modular forms of weight one or of Maass forms, the automorphic distributions have continuous first antiderivatives. We recall earlier results of one of us on the Holder continuity of these continuous functions and relate them to results of other authors; this involves a generalization of classical theorems on Fourier series by S. Bernstein and Hardy-Littlewood. We then show that the antiderivatives are non-differentiable at all irrational points, as well as all, or in certain cases, some rational points. We include graphs of several of these functions, which clearly display a high degree of oscillation. Our investigations are motivated in part by properties of "Riemann's nondifferentiable function", also known as "Weierstrass' function".Comment: 27 pages, 6 Figures; version 2 corrects misprints and updates reference

    Insights on neutrino lensing

    Get PDF
    We discuss the gravitational lensing of neutrinos by astrophysical objects. Unlike photons, neutrinos can cross a stellar core; as a result, the lens quality improves. We also estimate the depletion of the neutrino flux after crossing a massive object and the signal amplification expected. While Uranians alone would benefit from this effect in the Sun, similar effects could be considered for binary systems.Comment: 15 pages, 4 figures, to be published in Phys. Lett.

    Superconducting Rebalance Accelerometer

    Get PDF
    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described

    The growth of different body length dimensions is not predictive for the peak growth velocity of sitting height in the individual child

    Get PDF
    The aim of this study was to determine whether the differences in timing of the peak growth velocity (PGV) between sitting height, total body height, subischial leg length, and foot length can be used to predict whether the individual patient with adolescent idiopathic scoliosis is before or past his or her PGV of sitting height. Furthermore, ratios of growth of different body parts were considered in order to determine their value in prediction of the PGV of sitting height in the individual patient. Ages of the PGV were determined for sitting height (n = 360), total body height (n = 432), subischial leg length (n = 357), and foot length (n = 263), and compared for the whole group and for the individual child in particular. Furthermore, the ages of the highest and lowest ratios between the body length dimensions were determined and compared to the age of the PGV of sitting height. The mean ages of the highest and lowest ratios were significantly different from the mean age of the PGV of sitting height in 3 out of 12 ratios in girls and 8 out of 12 ratios in boys. The variation over children was large and the ratios were too small, leading to a too large influence of measurement errors. The mean ages of the PGV all differed significantly from the mean age of the PGV of sitting height. However, the variation over individual children of the age differences in PGV between body dimensions was large, and the differences in timing of the PGV were not useful to predict whether the individual child is before or past his or her PGV of sitting height

    Introduction to tandem mirror physics

    Get PDF
    • …
    corecore