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ABSTRACT

It is known that tokamaks display a second region of stability to ideal magnetohydro-

dynamic (MHD) internal modes. An important determining factor for MHD properties

is the radial profile of toroidal current. Here it is shown that in a low aspect ratio toka-

mak with high on-axis safety factor (qo ~ 2) and high shear a path to high beta can

be obtained that remains completely stable against ideal MHD modes. By maintaining

high shear this scenario avoids fixed boundary instabilities for both high and low toroidal

mode numbers for beta values well above the Troyon limit (stability was tested up to

c = 1.4, Q = 10.8% ). For a close fitting wall (awaul/aplasma ~ 1.2) this configuration is

also stable to low toroidal mode number balloon-kink modes.
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I. INTRODUCTION

High beta is desirable in fusion devices, and beta limitations imposed by ideal magne-

tohydrodynamics (MHD) have been the subject of active research for tokamak confinement

devices. Although MHD pressure driven modes usually impose a severe constraint in toka-

maks, it has been shown that at sufficiently high beta these devices can exhibit second

regions of stability to high-n ballooning modes (where n is the toroidal mode number)1 - .

Generally there is an unstable gap at intermediate beta separating the first and second

stability regions.

In order to obtain high beta in an actual experiment one would like to eliminate the

unstable region that separates the so-called "second stability region" from the first region.

In this work we demonstrate a method of achieving this result through the use of current

profile control '" 11to raise the on-axis safety factor %0 in a low aspect ratio torus. This

can be accomplished , for example, using RF or neutral beam current drive.

Previous studies of stable access to the second stability region have either raised the

on-axis safety factor 7,8,11-13, used indentation' 4 , or some combination of profile shaping

and indentation 15,16. Attempts to bridge the unstable region through the use of hot

electrons were also considered 17-19. For all of the non-indented configurations a low

shear profile was used. In these cases, it is possible that the global shear, S (defined

later) may fall significantly below unity at the flux surface with the maximum pressure

gradient, and this, in turn, might drive unstable low-n, fixed boundary instabilities, termed

"infernal" modes 20. In this article, we report for the first time a completely stable access

path to the second stability region without indentation while maintaining qe/qo ~~ 4 and

s > 1 over most of the plasma profile.
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Aspect ratio and toroidal current profile are an important determinant for MHD

stability. Theoretical analyses that utilize a large aspect ratio expansion cannot properly

predict low aspect ratio scaling. Codes such as PEST 2 which permit arbitrary aspect

ratio must be utilized in these studies.

We have found that low aspect ratio is favored for entrance into the high beta ( second

stability) tokamak operating regime. The reasons are as follows:

1. At low aspect ratio a reduction in the local shear is produced at the outside of the

torus at low beta. (For large aspect ratio shaping or finite beta is required to produce

such an effect).

2. High qo improves the average good curvature of the torus and this effect is amplified

by low aspect ratio.

In section 2 we review the physical mechanisms that produce the second stability

region and discuss the different approaches to it. Here we will explain the stabilizing influ-

ence of combining low aspect ratio with high q. Section 3 displays numerical calculations

of an illustrative example of a low aspect ratio, high q, high shear tokamak. Section 4

contains our conclusions.

II. SECOND STABILITY: THEORETICAL CONSIDERATIONS

In axisymmetric configurations like a tokamak, the equilibrium magnetic field can be

represented as

B = Vo x Va = Vo x VW +g(0)V (1)
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with

B dVO (2)

Here 27ro is the poloidal flux, W is the toroidal angle and 0 is a poloidal coordinate. The

equilibrium condition j x B = Vp with j = V x B leads to the Grad-Shafranov equation:

V-(R-2p gdg
d R2 dV) (3)

where R is the distance from the axis of symmetry. We shall use the following definition

of volume averaged poloidal beta, f%,

-4 < p >
Op=RoI2

with <p >= fp dV.

High-n ballooning modes at marginal stability are described by the following equation

22-24.

B -V ( B -VF
B F

(4)

+2 d p IIVpl2 )F=
+|V | dV ( B2 F)
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where F is the ballooning eigenfunction and r, and ng are the normal and geodesic com-

ponents of the magnetic curvature: x = (6B - V) 6B = Kic + re.i X 6B, 6, and 6B being

the unit vectors in the directions of Vik and B. Also

IVa 2 = B 2  +1VIk 212  (5)IV412 +

with

Va - V _ 1 e B - Vp
I=-= _VO- V dO] (6)

IV012  IV12 1 0 B - V

Since (B - VW) / (B - VO) = qe represents the local pitch of the magnetic field lines, the

quantity I represents the integrated local shear. The first term in Eq. (4) contains the

stabilizing effects of field line bending and shear. Notice that the magnetic shear enters

through the square of the integrated function I. The second term, proportional to dp/dik,

contains the ballooning drive that results from the combined effects of pressure gradient

and magnetic curvature. It involves a part proportional to the normal curvature r, and

a part proportional to the geodesic curvature mg. The latter is coupled to the integrated

local shear function I, this being a consequence of the short perpendicular wavelength

nature of the high-n modes under consideration.

A stable entrance into the second stability region requires a combination of effects

brought about by the high-beta equilibrium, that decrease the strength of the instability

driving forces while enhancing the restoring forces. Three such effects are clearly identifi-

able.
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1. The strengthening of the poloidal field on the outer side of the torus that results from

the large outward shift of the magnetic surfaces characteristic of high-beta equilibria.

This shortens the "connection length" or distance along a magnetic field line within the

region of unfavorable curvature. This stabilizing effect diminishes the instability drive

associated with the normal curvature and enhances the stabilizing force associated

with the magnetic tension, acting equally on low and high toroidal mode number

modes 1-6,25-27

2. The reversal of the local magnetic shear on the outside of the torus. This has the net

effect of stabilizing the region where the ballooning mode will ordinarily localize since

the destabilizing normal curvature is maximum there' 6 . In a low aspect ratio torus

geometric effects will decrease the local shear on the outside of the torus and thus

facilitate shear reversal. This effect is only relevant to high-n modes.

3. The enhancement of the region of favorable magnetic curvature 7 '"'brought about

by toroidal effects in configurations with small aspect ratio and large values of the

inverse rotational number q. This effect is present at all beta values.

We shall exploit all of these effects in order to achieve a stable path from the first to

the second stability regimes. In the following sections we will discuss in some detail these

three stabilizing processes.

A. Local strengthening of the poloidal field

In high-beta tokamaks, the large outward force acting on the confined plasma is bal-

anced by strengthening the poloidal field on the outer side of the torus, where the distance

from the axis of symmetry is largest. This is due to the significant outward shift of the
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magnetic axis that compresses the magnetic surfaces and gives rise to larger values of VO

or B, on the outer side of the torus relative to those on the inner side. For vertically

(up-down) symmetric configurations, the normal curvature K, is an even function of the

poloidal angle, (roughly proportional to cos 6 for large aspect ratio circular tokamaks) with

unfavorable (destabilizing) sign on the outer side and favorable (stabilizing) sign on the

inner side. As shown by Eq. (4) the instability driving term associated with r, appears

divided by IVok1. At low beta, IV0 I= RB, can be assumed to be a nearly constant func-

tion of the poloidal angle. However, as discussed before, at high beta IViP is considerably

enhanced in the region of unfavorable curvature, thus the instability drive of the normal

curvature is depressed. In fact this instability driving term is effectively depressed by a

further power of |V01 because the derivatives in the (shear-Alfv6n) first term of Eq. (4) are

taken along the magnetic field line. This is the so called the "shortening of the connection

length" stabilizing effect. Figure 1 illustrates these properties. In a low-beta equilibrium

with nearly uniform poloidal field, a magnetic field line spends almost equal lengths in

the favorable and unfavorable regions. On the contrary, for a high-beta equilibrium with

enhanced poloidal component in the unfavorable curvature region, the magnetic field line

length in this region is reduced.

Low-n modes are mostly driven by the normal component of the magnetic curvature

that aligns itself with the pressure gradient (provided o ;> 1). Therefore the stabilizing

effect discussed in this section applies equally to low-n modes and is responsible for the

existence of the second stability region also at low toroidal wavenumbers 25-28.

B. Local reversal of the magnetic shear

In tokamaks the average rotational transform decreases away from the magnetic axis,

in other words the average shear defined by s = 0 dq/db is positive. In low-beta, high
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aspect ratio equilibria with nearly uniform poloidal fields around a magnetic surface, the

local shear is also nearly uniform as a function of 0 and has the same sign as its flux surface

average. Therefore, the integrated local shear function I is monotonically increasing as

illustrated in Fig. 2. However, high-beta equilibria tend to decrease locally the value of the

shear on the outer side of the torus. For sufficiently high beta this local shear can change

sign so that on the outer side, its sign is opposite to that of the average shear. (Shaping,

and in particular indentation, will facilitate this effect.) This results in a locally decreasing

integrated shear I as shown also in Fig. 2.

The geodesic curvature r.9 is an odd function of the poloidal angle (roughly propor-

tional to sin 9 in large aspect ratio circular tokamaks). It enters the high-n ballooning

equation as a reflection of the fact that these high-n modes must propagate perpendic-

ularly to the magnetic field to avoid large field-bending. In the ballooning equation the

geodesic curvature is coupled to the local magnetic shear in such a way that K9 appears

multiplied by the integrated function I. If I is monotonic, the destabilizing force is max-

imized by choosing Oo = 0 so that I is also an odd function of 9 and the product K. I

has a destabilizing sign for any 9 (--r < 9 < 7r). Since the shear enters the stabilizing

shear-Alfv6n term through P, this term is minimized by localizing the mode near 0 = 0

where I = 0. Now, because the vicinity of 9 = 0 is also subject to the largest desta-

bilizing contribution from the normal curvature, an instability may develop. This is the

conventional picture of the ballooning mode at the first instability threshold.

Equilibrium changes that take place at sufficiently high poloidal beta can cause a

completely different picture to emerge '. If I is a decreasing function of 9 near 9 = 0

and the parameter 0 were still chosen to be zero, the geodesic curvature term K9 I would

be stabilizing in the 0 ~ 0 region. This is where the mode would otherwise tend to be
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localized because I = 0, hence the shear stabilization minimized, and the instability drive

of the normal curvature maximized. To avoid this situation we may have to choose Oo $ 0,

presumably in such a way that a zero of I coincides with its local minimum as illustrated

in Fig. 2. The minimum of I is by definition the point where the local shear, s8, vanishes.

By localizing the mode near the locus of vanishing local shear we minimize the shear

stabilization while obtaining a destabilizing contribution from the geodesic curvature. If

this mode localization is not too close to the region of stabilizing normal curvature an

instability may develop. However, if beta is so high that the zero of the local shear has

moved close to the region of favorable normal curvature (which may have been enhanced

by the shortening of the connection length or other effects), it may not be possible to

construct an unstable mode. This process produces the second stability region for high n

ballooning modes.

In high aspect ratio tori the local shear is a monotonically increasing function of flux at

low beta. As beta is increased local shear decreases on the outside of the torus. Eventually

the local shear will reverse at the outside of the torus, and thereafter further increases in

beta become stabilizing. Local shear reversal can be enhanced by shaping or simply by

reducing the global shear. These two processes do not depend strongly on aspect ratio and

lend themselves to theoretical studies that exploit large aspect ratio expansions. Current

profile control, however, is most effective in low aspect ratio tori where such expansions

cannot be made.

Figure 3 shows contours of local shear for tori of different shape at a fixed global shear

defined by qo ~ 2, q, ~ 8 with q, the outer edge q value. Figure 3a shows the contours for

a circular cross section high aspect ratio torus ( A = 20 ) at low poloidal beta ( f, = 0.01).

Figure 3b shows these contours in a low poloidal beta torus with aspect ratio 3. We observe
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here a distortion of the circular contours signifying a decrease in local shear on the outside

of the torus. The origin of this effect can be seen from the following considerations: We

can write the local q as

rBEt r(RBt) r g( )
RB, R(RB,) RIVIk|'

For circular, low beta equilibrium this becomes

= q(jb) 1 - A 'cos(0) (8)1 + (r/Ro)cos(O)

with A the Shafranov shift for the flux surface at radius r and A' = dA/dr. Since

A ~ r 2/8Ro + O(f3,,) (for a flat current profile 29), where c is the inverse aspect ratio, we

can obtain s, at 0 = 0 and low 3

se(O = 0) oc r dqt/dr = rq'(0) 1 - r/4R q(0) 1.25(9)(1+r/Ro) Ro (1+r/Ro)2

From Eq. 9 we observe that at large aspect ratio, se(O = 0) = s('b), the global shear,

but as the aspect ratio A decreases, an 0(1/A) term subtracts from the global shear at

the outside of the torus. At the transition to second stability q3, ~ 1, and an additional

term proportional to q'c#, would appear in Eq. 9. Now the last term in Eq. 9 is smaller

than the q'E#f term by an order E. However for low aspect ratio E - 0.3 this term offers a

> 30 % correction that can easily provide the margin required for stability.

In Fig 3c we maintain low beta and consider a D shaped plasma cross section (ellip-

ticity r. = 1.4, triangularity 6 = 0.3). We maintain an aspect ratio of A = 3 (although
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shaping is not dependent on aspect ratio). We observe a further reduction in the local

shear at the outside of the torus and the development a small shear reversed region, which

is cross-hatched. As beta increases (Figure 3d) this region grows and the amplitude of the

reversed shear increases.

For high-n modes the local reversal of the magnetic shear is the dominant mechanism

producing the second stability region. As a matter of fact, the simplest model ballooning

equation (sometimes referred to as the s - a model) includes this effect as its only high

beta feature, and shows the existence of a second stability region 24. Unfortunately the

local shear-geodesic curvature effects are important only for high-n modes. Low-n modes,

which may be the most relevant ones, are mostly driven by the normal curvature (provided

qo > 1).

The adoption of a low global shear configuration greatly reduces the restoring forces

associated with the magnetic shear with no benefits whatsoever for low-n modes. This

gives rise to the so called infernal instabilities 20, or low-n pressure driven modes that can

become unstable much before their high-n counterparts. However, we have seen that the

reduction of local shear through low aspect ratio and shaping effects also facilitates the

reversal of local shear . This permits maintenance of strong global shear and presents the

best option for stabilizing both high and low-n modes.

C. High q at small aspect ratio

The stabilizing effects discussed in the two previous sections are beta-related effects

which produce the second stability region. Here we turn to a stabilizing effect that is

not directly beta-related but depends strongly on the aspect ratio as it reflects a purely

toroidal feature. This is the toroidal modification of the magnetic curvature that results in
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an enhanced favorable region if q is greater than one. The relevance of this to our second

stability approach is that it provides a means of bridging the first and second stability

regimes, so that an instability-free path to high beta can be obtained '. To illustrate this

effect we consider a circular flux surface tokamak. The normal component of the magnetic

curvature is

B' cos0 B2
n = R - .(10)

' B2 R? B 2 r'

In the infinite aspect ratio limit Nn tends to - cos 9/Ro so that its average vanishes and

the regions of favorable and unfavorable curvature are equivalent. At finite aspect ratio

we must take into account two new contributions: the contribution of the poloidal field

(second term on the right hand side of Eq. (10)) which is unfavorable everywhere but

proportional to q-2, and the toroidal corrections associated with the poloidal variation of

R (R = Ro + r cos 0) which are favorable. Keeping finite aspect ratio corrections to first

order for f3, = 0 (1), we have

cos0 r 2 1
K= - + W cos 9--_ (11)Ro R2

For sufficiently large q, the unfavorable contribution of the poloidal field is depressed and

a net enhancement of the favorable region is obtained. Of course, this being a toroidal

effect, a finite aspect ratio is needed for it to make any significant difference in the stability

properties of the plasma.

Given the previous considerations we selected a relatively low aspect ratio (A = 3)

high q (qo = 2), tokamak as our way of investigating the access to the second stability
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region. We are mostly interested in the stability against finite-n modes which are the ones

that will affect the macroscopic behavior of the plasma. For this reason we do not consider

the low-shear approach which is only relevant to high-n modes and may be very detrimental

to low-n modes. We choose a high-shear equilibrium (qo ~ 2, q, ~ 7.6) that should have

good shear stabilization and be free from infernal instabilities. Second stability is due to

the combination of strengthening of the poloidal field associated with large Shafranov shifts

(which applies to both low-n and high-n modes), and to local shear reversal. The high

q and low aspect ratio allow the connection between first and second stability regimes so

that we are able to produce sequences of equilibria which are completely free of instabilities

into the second stability regime.

Since no instability is actually found, "second stability " is defined as the point where

further increases in beta make the incremental MHD potential energy W more negative.

This happens for q3, Z 0.7. Since at low beta (El #, 1) 3 is proportional to e for fixed c3,,,

higher beta is required to reach second stability at low aspect ratio. This unfavorable

scaling is mitigated by its q; 2 dependence . In fact our E = 1/3 equilibria reach second

stability against high-n modes at relatively modest beta values; co, ~ 0.7 , # ~ 1.2%

. Moreover the relatively small aspect ratio allows a significant first stability domain

where the plasma can be started and from which progress towards higher beta regimes can

gradually be attempted.

III. NUMERICAL RESULTS
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A. Equilibrium

In our calculations we determine equilibrium and high n Mercier and ballooning sta-

bility by means of the PEST code 21. The code is run in the fixed boundary mode using 40

angular grid points (in 7r radians) and 40 flux surfaces. In the sequences shown the plasma

pressure is augmented in steps of about 20 %. The geometry of the plasma boundary is

characterized by an aspect ratio A = 3 (Ro = 0.9 m, a = 0.3 m), elongation V = 1.4, and

triangularity 6 = 0.3. The vacuum toroidal field is taken to be 1 T and the plasma current

varies from 130 kA up to 280 kA (see Table 1). We consider a sequence of equilibria with

increasing beta and a roughly invariant q-profile characterized by high qo (qo = 2) and

high shear (q, ~ 7.6). We also require that the toroidal current density be a well behaved

function in the sense that it has no sign reversals, it vanishes approximately at the plasma

edge, and its flux surface average is monotonically decreasing. In order to achieve this we

proceed in the following way:

At low beta ( ef3, < 0.7 we specify analytically the current density profile as

dp 1dg2

dik 2R db

with

P = po 1 --

g2______2g, -i
( 2B2 = 1 + 2 -(RB )vacuum ^Y
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and

The parameter gp is adjusted to obtain the desired edge safety factor q. = 7.6 , and -Y

(-y > 1.5) is adjusted to obtain the desired qo = 2 . As po is varied we generate in this

fashion a sequence of equilibria with increasing beta, approximately invariant q profile,

and vanishing current density at the plasma edge.

At high values of beta we approach an equilibrium limit. To avoid this limit we switch

to a flux conserving sequence. That is to say we freeze the pressure profile width parameter

(-y = 1.5) as well as the q-profile, and continue generating the higher beta equilibria

sequence specified by p (b) = po (1 - 1b) and q (ib) which is read numerically from the

last analytic current profile equilibria ( Ef,=0.7). In this way we generate equilibria up to

c#, = 1.4 and volume averaged beta = 10.8% with well behaved current profiles.

Figures 4 and 5 display the poloidal flux and toroidal current density contour plots for

representative equilibria states in this sequence. Figures 6 and 7 show the corresponding

ohmic current ( flux surface averaged j11) and q profiles.

Figure 8 shows the toroidal current density, pressure, and safety factor q, as a function

of major radius at the median plane of the torus, z = 0, for our highest beta (0.= 10.8 %)

case. Notice that the toroidal current remains positive throughout the cross section slice.

A consequence of flux conservation is that toroidal current increases with poloidal

beta. Thus the current that was fixed at 130 kA in the lowest beta part of the ramp-up

increases up to 280 kA in the highest beta ( P = 10.8%) equilibrium.
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B. Stability of High Toroidal Number Modes

We have tested the stability of the above described equilibria against high toroidal

mode number interchange and ballooning modes. The qo = 2 equilibria are stable on all

flux surfaces with regard to the Mercier criterion for interchange modes. The ballooning

equation (4) is solved with a shooting code to obtain the critical p' = dp/dik at each

magnetic surface. The results presented below depend of course on the pressure, current

and safety factor profiles that we chose so the trends illustrated are more important than

the exact parameters required for stability (i.e. qo and shape).

Figure 9 shows the ballooning mode stability criterion (1-p',it/p')ma. vs. co,. The

subscript max refers to the most unstable (or least stable) magnetic surface (the surface

that maximizes 1-p'.it/p'), so that all surfaces are stable when this parameter is less than

zero. The qo = 2 equilibrium sequence shown was stable on all flux surfaces with regard

to ballooning modes as well as to Mercier modes. We observe that past E,3p - 0.6 (0 - 1.2

%) stability improves with increasing beta . Thus the second stability regime is reached.

(The small jump that occurs at e/3, - 0.6 in Fig. 9 reflects a change in poloidal grid that

was made to facilitate the flux conserving calculation. The kink in the curve at co, - 0.8

reflects a jump in the location of the least stable flux surface.

Since the local shear is zero at a finite poloidal angle 0, attention must be paid to

varying the parameter Oo (Eq. 6) in order to look for the most unstable mode. After

checking this we find that stability is maintained throughout the sequence.

For comparison with the qo= 2 sequence, similar sequences with qo = 1 , q, : 4

(I, - 300 kA) and qo=1.5 , q - 6 (I, - 225 kA) were also generated. Fig. 9 indicates
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that the qo = 1.5 startup path must traverse an unstable region that occupies up to 17 %

of the radial dimension. The qO = 1 sequence does not completely restabilize.

The requirements on current control as a function of higher aspect ratio are illustrated

in Fig 10. Here we vary the aspect ratio and plot the required qo for a stable transition

into the second stability region as a function of aspect ratio, keeping q, fixed at 8. For

example A=9 requires qo = 5.3 for a stable transition to occur. Clearly a higher aspect

ratio would require a higher qo, which presents a more stringent requirement on profile

control and reduces the global shear. It should be kept in mind that these results indicate

trends and the exact requirement on qo depends on the class of profiles chosen.

C. Stability of Low Toroidal Number Modes

Low toroidal number modes can become unstable in fixed boundary plasmas ( i.e. for

a conducting wall at the plasma boundary) when the shear is sufficiently weak 3o,20. These

instabilities have been termed infernal modes. We have considered the stability of fixed

boundary modes with n < 4 using the PEST-2 code 21using 128 angular grid points, 201

flux surfaces and keeping approximately 30 poloidal modes.

Sequences were followed up to beta values well in excess of the MHD beta limit

proposed by Troyon 31 . The "Troyon limit" is expressed as a critical beta value which, in

MKS units is given by

3 x 10-8I,
aBo

In our calculations the transition to second stability occurs at ,= 1.2 % whereas the Troyon

limit is #T= 1.5 %. (The Troyon limit is however calculated for an optimum qo of a 1.2

and it degrades at higher qo 31).
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At the high q, used ( q = 7.6 ) the code is not able to adequately resolve values of

n >3 since the number of poloidal Fourier harmonics required for convergence scales as

nq,. However, we know from the calculations discussed in the previous section that the

high-n modes are stable. The fixed boundary n = 1 to 3 modes were seen to be stable at

all of the beta values considered. As the wall moves away from the plasma surface internal

modes can couple to external kink modes.

Figure 11 shows the stability of the n = 1 to 3 modes as a function of wall position.

(The error bars in this figure connect the last stable and first unstable wall position tested

as the wall position recedes from the plasma boundary.) The modes reach their most

unstable point indicated by the close required wall position, at about E43, ~ 1 and then

become more stable at higher beta. At high poloidal beta the n = 2 mode is more unstable

than n = 1 because wall stabilization is weaker for this mode. The n = 3 mode is only

slightly more unstable than n = 2 indicating that the expected stability of high-n modes

(shown in the previous section) is beginning to appear. Moreover, because of the adopted

high shear, and reasonable pressure profile the oscillatory dependence of the growth rate

as a function of n, characteristic of infernal instabilities 2 0 ,3 0 , is not expected in our case.

Therefore, although we do not have the numerical accuracy to resolve n > 3 modes, we

can have reasonable confidence that they will be stable. We conclude that by positioning

the wall within 1.2 x the plasma radius this startup sequence becomes stable to all ideal

MHD modes.

IV. CONCLUSIONS

We have shown that with the use of current profile control in a low aspect ratio

torus we can obtain a high beta tokamak equilibrium that is stable to all ideal MHD

18



modes throughout the entire startup sequence. We maintain high global shear so that one

would also expect good stability properties with respect to infernal and tearing modes.

The increase in toroidal current at high beta may ameliorate the degradation in energy

confinement associated with low current operation.

A conducting wall is required at about 20 % of the minor radius beyond the plasma

edge to stabilize low-n modes. The most unstable mode appears to be n = 3 which

indicates that lower n modes are more strongly stabilized by the wall. We expect higher

n modes to be stable since a saturation appears to have set in as indicated by the n = 3

mode being only slightly more unstable than the n = 2 and since we have shown that high

n modes are stable.

The non-ohmic current profile required suggests using second stability in conjunction

with steady state operation. The low toroidal current corresponding to high q operation

reduces the current drive power requirements, thus making the power balance during cur-

rent drive more favorable. Bootstrap currents that may appear in high beta equilibria

would also reduce the current drive requirements although the profiles produced may not

be optimum.
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Table I

Tokamak parameters

Aspect Ratio

qo

q,

Minor Radius (m)

Ellipticity, K.

Triangularity, 6

Vacuum Toroidal Field (T)

Plasma Current (kA)
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2

7.6

0.3

1.4

0.3

1

130-280



FIGURE CAPTIONS

1. Schematic indicating distortion of field lines at high beta in 0 - 0 space. Also shown

( dashed line) is the normal curvature as a function of 0.

2. Schematic indicating distortion of integrated local shear, I, at high beta. Curve

marked 00 3 0 contains integration constant appropriate to the most unstable eigen-

mode. Dashed curve indicates geodesic curvature.

3. Contours of constant local shear for tokamaks with qo = 2 and q = 7.6. a) A=20

and Op = 0.01, b) A=3, Op = 0.01 c) A=3, r = 1.4, = 0.3, #, = 0.01 , d) A=3,

r = 1.4, 6 = 0.3, , = 1.4. The cross-hatched region contains negative local shear.

4. Poloidal flux contours for four characteristic equilibrium states in our qo = 2 sequence.

The corresponding equilibrium poloidal betas are a) , = 0.2, b) f, = 1.25, c) ,, = 2,

d) , = 3.1 and the volume averaged total betas are a) 3 = 0.06%, b) 3 = 0.61%, c)

3 = 1.41%, d) 0 = 3.40 % .

5. Toroidal current contours for the four equilibria displayed in Fig. 4.

6. Ohmic current (arbitrary units) vs. flux for the four equilibria displayed in Fig. 4.

7. Safety factor q vs. flux for for the four equilibria displayed in Fig. 4.

8. Plasma pressure p, safety factor q, toroidal field and toroidal current jo , vs. major

radius at the torus midplane for 3 = 10.8 %.

9. High-n ballooning mode stability factor (on least stable flux surface) vs. /,, for equi-

libria characterized by qo = 1 q, = 4, qo = 1.5 q, = 6, and qo = 2 q, = 7.6.
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10. qo value required for a stable transition into the second stability region as a function

of the aspect ratio, A. q, is fixed at 8.

11. Wall location required for marginal stability of qo= 2 equilibria against low-n modes.

n = 1, 2 and 3 modes are shown.
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