443 research outputs found
High-Frequency network activity, global increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro
How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (100 Hz) and reduction in system complexity.HFAis generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles ofHFAare generated by the near-synchronous (within 5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is haracterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure
Photometry of Proxima Centauri and Barnard's Star Using HST Fine Guidance Sensor 3: A Search for Periodic Variations
We have observed Proxima Centauri and Barnard's Star with Hubble Space
Telescope Fine Guidance Sensor 3. Proxima Centauri exhibits small-amplitude,
periodic photometric variations. Once several sources of systematic photometric
error are corrected, we obtain 2 milli-magnitude internal photometric
precision. We identify two distinct behavior modes over the past four years:
higher amplitude, longer period; smaller amplitude, shorter period. Within the
errors one period (P ~ 83d) is twice the other. Barnard's Star shows very weak
evidence for periodicity on a timescale of approximately 130 days. If we
interpret these periodic phenomena as rotational modulation of star spots, we
identify three discrete spots on Proxima Cen and possibly one spot on Barnard's
Star. We find that the disturbances change significantly on time scales as
short as one rotation period.Comment: 39 pages, 17 figure
Interferometric Astrometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: Detection Limits for sub-Stellar Companions
We report on a sub-stellar companion search utilizing interferometric
fringe-tracking astrometry acquired with Fine Guidance Sensor 3 (FGS 3) on the
Hubble Space Telescope. Our targets were Proxima Centauri and Barnard's Star.
We obtain absolute parallax values for Proxima Cen pi_{abs} = 0.7687 arcsecond
and for Barnard's Star pi_{abs} = 0.5454 arcsecond.
Once low-amplitude instrumental systematic errors are identified and removed,
our companion detection sensitivity is less than or equal to one Jupiter mass
for periods longer than 60 days for Proxima Cen. Between the astrometry and the
radial velocity results we exclude all companions with M > 0.8M_{Jup} for the
range of periods 1 < P < 1000 days. For Barnard's Star our companion detection
sensitivity is less than or equal to one Jupiter mass for periods long er than
150 days. Our null results for Barnard's Star are consistent with those of
Gatewood (1995).Comment: 35 pages, 13 figures, to appear in August 1999 A
Triage conducted by lay-staff and emergency training reduces paediatric mortality in the emergency department of a rural hospital in Northern Mozambique
Introduction
The majority of emergency paediatric death in African countries occur within the first 24 h of admission. A coloured triage system is widely implemented in high-income countries and the emergency triage and assessment treatment (ETAT) is recommended by the World Health Organization, but not put into practice in Mozambique. We implemented a three-colour triage system in a rural district hospital with lay-staff workers conducting the first triage.
Methods
A retrospective, before and after, mortality analysis was performed using routine patient files from the district hospital between 2014 and 2017. The triage system was implemented in August 2016. Inclusion criteria were children under 15 years of age that entered the emergency centre. Primary outcome was child mortality rate. Secondary outcomes included the percentage agreement between the clinical and non-clinical staff and the duration from triage to first treatment. We used a negative binomial model in STATA 15 to compare mortality rates, and Kappa statistics to estimate the agreement between clinical and non-clinical staff.
Results
4176 admissions were included. The mortality rate ratio (MMR) was 45% lower after the start of the intervention (2016; MRR = 0.55; 0.38, 0.81; p = 0.002), compared to before. To estimate the agreement between non-clinical and clinical staff, 548 (of the 671) patient files were included. The agreement was estimated at 88.7% (Kappa = 0.644; p < 0.001). The median waiting time decreased with urgency of the triage: 2 h33 for ‘green’/least serious (IQR 1 h58-3 h30), 21 min for yellow/serious (IQR 0 h10-0 h58) and nine minutes for ‘red’/urgent (IQR 2–40 min).
Conclusion
In a rural setting with nurse-led clinical care and non-clinician staff working at the triage reception, implementation of a three-coloured triage system was feasible. Triage and ETAT training was associated with a decrease of 45% of paediatric deaths. The impact on mortality, low cost, and ease of the implementation supports scaling this intervention in similar settings
Recommended from our members
The Distance To The Hyades Cluster Based On Hubble Space Telescope Fine Guidance Sensor Parallaxes
Trigonometric parallax observations made with the Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) 3 of seven Hyades members in six fields of view have been analyzed along with their proper motions to determine the distance to the cluster. Knowledge of the convergent point and mean proper motion of the Hyades is critical to the derivation of the distance to the center of the cluster. Depending on the choice of the proper-motion system, the derived cluster center distance varies by 9%. Adopting a reference distance of 46.1 pc or m - M = 3.32, which is derived from the ground-based parallaxes in the General Catalogue of Trigonometric Stellar Parallaxes (1995 edition), the FK5/PPM proper-motion system yields a distance 4% larger, while the Hanson system yields a distance 2% smaller. The HST FGS parallaxes reported here yield either a 14% or 5% larger distance, depending on the choice of the proper-motion system. Orbital parallaxes (Torres et al.) yield an average distance 4% larger than the reference distance. The variation in the distance derived from the HST data illustrates the importance of the proper-motion system and the individual proper motions to the derivation of the distance to the Hyades center; therefore, a full utilization of the HST FGS parallaxes awaits the establishment of an accurate and consistent proper-motion system.NASA HST GTO, HF-1042.01-93A, HF-1046.01-93A, NAS526555Astronom
Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae
We present an absolute parallax and relative proper motion for the
fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric
data from FGS 3, a white-light interferometer on HST. We find mas. Spectral classifications and VRIJHKTM and DDO51 photometry of
the astrometric reference frame surrounding RR Lyr indicate that field
extinction is low along this line of sight. We estimate =0.07\pm0.03 for
these reference stars. The extinction suffered by RR Lyr becomes one of the
dominant contributors to the uncertainty in its absolute magnitude. Adopting
the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61
^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 -
18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr
variables in the LMC, , remaining a significant uncertainty. We compare
this result to more than 80 other determinations of the distance modulus of the
LMC.Comment: Several typos corrected. To appear in The Astronomical Journal,
January 200
A Detailed Investigation of the Proposed NN Serpentis Planetary System
The post-main sequence eclipsing binary NN Serpentis was recently announced
as the potential host of at least two massive planetary companions. In that
work, the authors put forward two potential architectures that fit the
observations of the eclipsing binary with almost identical precision. In this
work, we present the results of a dynamical investigation of the orbital
stability of both proposed system architectures, finding that they are only
stable for scenarios in which the planets are locked in mutual mean motion
resonance. In the discovery work, the authors artificially fixed the orbital
eccentricity of the more massive planet, NN Ser(AB) c, at 0. Here, we reanalyse
the observational data on NN Serpentis without this artificial constraint, and
derive a new orbital solution for the two proposed planets. We detail the
results of further dynamical simulations investigating the stability of our new
orbital solution, and find that allowing a small non-zero eccentricity for the
outer planet renders the system unstable. We conclude that, although the
original orbits proposed for the NN Serpentis planetary system prove
dynamically feasible, further observations of the system are vital in order to
better constrain the system's true architecture.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society; 5 figures, 2 table
A detailed analysis of the HD 73526 2:1 resonant planetary system
We present six years of new radial velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical ( interacting) fits to these data, yielding four possible configurations for the system. The new data now show that both resonance angles are librating, with amplitudes of 40 degrees and 60 degrees, respectively. We then perform long-term dynamical stability tests to differentiate these solutions, which only differ significantly in the masses of the planets. We show that while there is no clearly preferred system inclination, the dynamical fit with i = 90 degrees provides the best combination of goodness-of-fit and long-term dynamical stability.Peer reviewe
Photometry of Proxima Centauri and Barnard\u27s Star Using Hubble Space Telescope Fine Guidance Sensor 3: A Search for Periodic Variations
We have observed Proxima Centauri and Barnard\u27s star with the Hubble Space Telescope Fine Guidance Sensor 3. Proxima Cen exhibits small-amplitude, periodic photometric variations. Once several sources of systematic photometric error are corrected, we obtain 2 mmag internal photometric precision. We identify two distinct behavior modes over the past 4 years: higher amplitude, longer period and smaller amplitude, shorter period. Within the errors, one period (P ~ 83 days) is twice the other. Barnard\u27s star shows very weak evidence for periodicity on a timescale of approximately 130 days. If we interpret these periodic phenomena as rotational modulation of starspots, we identify three discrete spots on Proxima Cen and possibly one spot on Barnard\u27s star. We find that the disturbances change significantly on timescales as short as one rotation period
- …