1,347 research outputs found

    Resistance breeding of common bean shapes the physiology of the rhizosphere microbiome.

    Get PDF
    Abstract: The taxonomically diverse rhizosphere microbiome contributes to plant nutrition, growth and health, including protection against soil-borne pathogens. We previously showed that breeding for Fusarium-resistance in common bean changed the rhizosphere microbiome composition and functioning. Here, we assessed the impact of Fusarium-resistance breeding in common bean on microbiome physiology. Combined with metatranscriptome data, community-level physiological profiling by Biolog EcoPlate analyses revealed that the rhizosphere microbiome of the Fusarium-resistant accession was distinctly different from that of the Fusarium-susceptible accession, with higher consumption of amino acids and amines, higher metabolism of xylanase and sialidase, and higher expression of genes associated with nitrogen, phosphorus and iron metabolism. The resistome analysis indicates higher expression of soxR, which is involved in protecting bacteria against oxidative stress induced by a pathogen invasion. These results further support our hypothesis that breeding for resistance has unintentionally shaped the assembly and activity of the rhizobacterial community toward a higher abundance of specific rhizosphere competent bacterial taxa that can provide complementary protection against fungal root infections

    Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines?

    Get PDF
    Over the last decades, vaccine development has advanced significantly in pursuing higher safety with less side effects. However, this is often accompanied by a reduction in vaccine immunogenicity and an increased dependency on adjuvants to enhance vaccine potency. Especially for diseases like cancer, it is important that therapeutic vaccines contain adjuvants that promote strong T cell responses. An important mode of action for such adjuvants is to prolong antigen exposure to dendritic cells (DCs) and to induce their maturation. These mature DCs are extremely effective in the activation of antigen-specific T cells, which is a pre-requisite for induction of potent and long-lasting cellular immunity. For the activation of CD8+ cytotoxic T cell responses, however, the exogenous vaccine antigens need to gain access to the endogenous MHCI presentation pathway of DCs, a process referred to as antigen cross-presentation. In this review, we will focus on recent insights in clinically relevant vaccine adjuvants that impact DC cross-presentation efficiency, including aluminum-based nanoparticles, saponin-based adjuvants, and Toll-like receptor ligands. Furthermore, we will discuss the importance of adjuvant combinations and highlight new developments in cancer vaccines. Understanding the mode of action of adjuvants in general and on antigen cross-presentation in DCs in particular will be important for the design of novel adjuvants as part of vaccines able to induce strong cellular immunity

    An MR-compatible antenna and application in a murine superficial hyperthermia applicator

    Get PDF
    In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< −15 dB) for all working conditions and is MR-compatible

    The acceptance and use of the e-Health instrument 'The personal health check' in four Dutch municipalities:Lessons learned

    Get PDF
    This pilot study assessed the acceptance and use of the e-Health instrument “the Personal Health Check” (PHC) among clients and professionals in primary care settings. By filling in the online PHC instrument, participants were provided insights into their health and lifestyle. When results revealed an increased health risk, participants were advised to undertake additional lab tests measuring blood pressure and haemaglobin levels. Based on the online questionnaire and optional lab tests, participants then received a report that included individually-tailored feedback from the e-Health application about personal health risks and suggestions for health interventions. The PHC was implemented in 2016 in four Dutch municipalities that determined which neighbourhood(s) the PHC targeted and how participants were invited. The Unified Theory of Acceptance and Use of Technology was used as a theoretical framework to address our research questions. Methods used to assess acceptance were: PHC instrument data, data from additional questionnaires completed by PHC participants, focus groups with PHC participants and professionals in primary care, and telephone interviews with non-responders to the invitation to participate in the online PHC. Of the 21,735 invited, 12% participated. Our results showed that participants and professionals in this pilot were predominantly positive about the PHC. Participants reported that they made an effort to apply the PHC lifestyle advice they received. Almost all had the knowledge and resources needed to use the PHC online instrument. Invitations from general practitioners almost doubled participation relative to invitations from the sponsoring municipalities. The overall low response rate, however, suggests that the PHC is unsuitable as a foundation on which to develop local public health policy

    Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10x Metagenomics

    Get PDF
    Disease-suppressive soils protect plants against soilborne fungal pathogens that would otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the antagonistic activity of the microbial community associated with the plant roots. Considering the enormous taxonomic and functional diversity of the root-associated microbiome, identification of the microbial genera and mechanisms underlying this phenotype is challenging. One approach to unravel the underlying mechanisms is to identify metabolic pathways enriched in the disease-suppressive microbial community, in particular, pathways that harbor natural products with antifungal properties. An important class of these natural products includes peptides produced by nonribosomal peptide synthetases (NRPSs). Here, we applied functional amplicon sequencing of NRPS-associated adenylation domains (A domains) to a collection of eight soils that are suppressive or nonsuppressive (i.e., conducive) to Fusarium culmorum, a fungal root pathogen of wheat. To identify functional elements in the root-associated bacterial community, we developed an open-source pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster reconstruction through analyzing A domain co-occurrence across samples. We applied this pipeline to rhizosphere communities from four disease-suppressive and four conducive soils and found significant similarities in NRPS repertoires between suppressive soils. Specifically, several siderophore biosynthetic gene clusters were consistently associated with suppressive soils, hinting at competition for iron as a potential mechanism of suppression. Finally, to validate dom2BGC and to allow more unbiased functional metagenomics, we performed 10× metagenomic sequencing of one suppressive soil, leading to the identification of multiple gene clusters potentially associated with the disease-suppressive phenotyp
    corecore