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ABSTRACT Disease-suppressive soils protect plants against soilborne fungal patho-
gens that would otherwise cause root infections. Soil suppressiveness is, in most
cases, mediated by the antagonistic activity of the microbial community associated
with the plant roots. Considering the enormous taxonomic and functional diversity
of the root-associated microbiome, identification of the microbial genera and mecha-
nisms underlying this phenotype is challenging. One approach to unravel the under-
lying mechanisms is to identify metabolic pathways enriched in the disease-suppres-
sive microbial community, in particular, pathways that harbor natural products with
antifungal properties. An important class of these natural products includes peptides
produced by nonribosomal peptide synthetases (NRPSs). Here, we applied functional
amplicon sequencing of NRPS-associated adenylation domains (A domains) to a col-
lection of eight soils that are suppressive or nonsuppressive (i.e., conducive) to
Fusarium culmorum, a fungal root pathogen of wheat. To identify functional ele-
ments in the root-associated bacterial community, we developed an open-source
pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster
reconstruction through analyzing A domain co-occurrence across samples. We
applied this pipeline to rhizosphere communities from four disease-suppressive and
four conducive soils and found significant similarities in NRPS repertoires between
suppressive soils. Specifically, several siderophore biosynthetic gene clusters were
consistently associated with suppressive soils, hinting at competition for iron as a
potential mechanism of suppression. Finally, to validate dom2BGC and to allow
more unbiased functional metagenomics, we performed 10� metagenomic sequenc-
ing of one suppressive soil, leading to the identification of multiple gene clusters
potentially associated with the disease-suppressive phenotype.

IMPORTANCE Soil-borne plant-pathogenic fungi continue to be a major threat to
agriculture and horticulture. The genus Fusarium in particular is one of the most dev-
astating groups of soilborne fungal pathogens for a wide range of crops. Our
approach to develop novel sustainable strategies to control this fungal root patho-
gen is to explore and exploit an effective, yet poorly understood naturally occurring
protection, i.e., disease-suppressive soils. After screening 28 agricultural soils, we
recently identified four soils that were suppressive to root disease of wheat caused
by Fusarium culmorum. We also confirmed, via sterilization and transplantation, that
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the microbiomes of these soils play a significant role in the suppressive phenotype.
By adopting nonribosomal peptide synthetase (NRPS) functional amplicon screening
of suppressive and conducive soils, we here show how computationally driven com-
parative analysis of combined functional amplicon and metagenomic data can
unravel putative mechanisms underlying microbiome-associated plant phenotypes.

KEYWORDS suppressive soils, functional amplicon, dom2BGC, 10�metagenomics,
pathogenic fungi, Fusarium, wheat, biosynthetic gene cluster, disease suppression,
nonribosomal peptide synthetase, rhizosphere, siderophores, software

Cereals are a staple food for the human population, with wheat as the most widely
consumed cereal crop worldwide. It is estimated that up to 40% of crop yields are

lost due to weeds, pests, and diseases (1). Pathogenic fungi are one of the major
threats to agriculture. The genus Fusarium in particular is one of the most devastating
groups of pathogens for a wide range of crops, including wheat (2, 3). Fusarium culmo-
rum causes root rot and head blights in wheat and barley. It can kill plants at early
stages of development or reduce their fitness and contaminate the grain with an arse-
nal of mycotoxins. Intriguingly, in some agricultural soils, root rot caused by F. culmo-
rum does not occur or only to a small extent (4). This so-called soil disease suppressive-
ness is a phenomenon where plants show strongly reduced disease symptoms despite
the presence of a virulent pathogen and conditions favorable for disease development
(5). It is now well established that the soil and root microbiomes are essential for dis-
ease suppressiveness. In recent work, we performed an extensive screening of 28 soils
for their suppressiveness to F. culmorum (4). We identified and confirmed, via steriliza-
tion and transplantation, that in four tested soils, the microbiome is associated with
suppressiveness to F. culmorum. Subsequent comparative taxonomic analysis of the
root-associated bacterial communities, aimed to identify differences in abundance or
absence/presence patterns of specific genera, revealed only limited commonalities
between the four suppressive soils. The overall aim of this study was to adopt a func-
tional approach to generate hypotheses regarding putative mechanisms associated
with the disease-suppressive phenotype.

Many microbe-microbe interactions are mediated by specialized metabolites with
diverse functions, including inhibition of fungal growth (6). The production of these
bioactive compounds is often encoded by biosynthetic gene clusters (BGCs): groups of
physically clustered genes that encode molecular machineries such as nonribosomal
peptide synthetases (NRPSs) and polyketide synthases (PKSs), which enzymatically
assemble complex metabolites. Importantly, these BGCs are often discontinuously dis-
tributed across taxa due to high rates of horizontal gene transfer (7). Additionally, there
may be functional redundancy due to overlapping biological activities between the
products of different BGCs. Therefore, looking at BGC distribution patterns may help
explain microbiome-associated phenotypes for which no clear taxonomic associations
are identified. PKS and NRPS enzymes are often organized in multidomain modules,
which each contain a set of enzymatic domains that extend the growing peptide or
polyketide chain with a specific monomer during enzymatic assembly. Functional
amplicon sequencing can target such domains using oligoprimers to amplify DNA
from BGCs. Because the sequencing is highly selective, even BGCs from lowly abundant
microorganisms can be detected by this technology (8, 9).

Here, we used NRPS amplicon screening for comparative functional analyses of a
set of four suppressive and four conducive agricultural soils in the presence and ab-
sence of the pathogen F. culmorum. To facilitate this analysis, we introduce dom2BGC
(code available at https://git.wur.nl/traca001/dom2bgc), a pipeline for extensive anno-
tation of BGC-related amplicons. The amplicons are annotated based on similarity to
domains in MIBiG and antiSMASH-DB, two large natural product BGC databases. For
NRPS adenylation (A) domains, substrate specificities are predicted based on a newly
built random forest classifier trained on the amplified region of these domains. When
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multiple samples are available, dom2BGC creates a co-occurrence network to aid in
the detection of groups of amplicons that jointly originate from known or related
BGCs. We applied dom2BGC and validated the annotation and clustering results with
the high-quality metagenome of a selected sample enhanced using 10�-based read
clouds. The results show siderophore BGCs as key candidates associated with disease
suppressiveness of the soils against F. culmorum. The linked read metagenomic data
set further revealed several additional BGCs that, based on their predicted functions,
may be involved in the disease-suppressive phenotype. This study exemplifies how
computationally driven analysis of combined functional amplicon and metagenomic
data can unravel new candidate BGCs for further investigation and help to develop
new hypotheses regarding the mechanisms underlying important microbiome-associ-
ated phenotypes.

RESULTS AND DISCUSSION
Identification of disease-suppressive agricultural soils. In our previous study (4),

we tested 28 diverse field soils from the Netherlands and Germany for disease suppres-
siveness against Fusarium culmorum root rot of wheat. Based on these results, we
selected four disease-suppressive (S01, S03, S11, and S28) and four disease-conducive
(S08, S14, S15, and S17) soils for further analysis. For the amplicon-based analyses of
the rhizosphere microbiome, we again performed disease suppressiveness assays on
these eight soils. We observed no disease symptoms in two inoculated suppressive
soils (S11 and S28) and only low levels of disease in the other two inoculated suppres-
sive soils (S01 and S03). This clearly contrasts with the four conducive soils, where dis-
ease levels varied from moderate (S08) to high (S14, S15, and S17) (Fig. 1). In two of
the conducive soils (S14 and S17), we also identified some mild disease symptoms in
treatments without addition of the pathogen, indicating the presence of indigenous
populations of F. culmorum or of other pathogens causing similar disease symptoms
(Fig. 1, light blue bars). Altogether, these results confirm and extend the results of our
previous study and show a clear distinction in phenotypes between the four suppres-
sive and the four conducive soils.

Functional amplicon sequencing uncovers novel NRPS domains from low-
abundant bacteria in rhizosphere microbial communities. As our previous 16S
rRNA-based analysis of taxonomic similarities and differences between and across con-
ducive and suppressive soils revealed that no taxa were unequivocally linked to dis-
ease suppression (4), we turned to functional amplicon sequencing to assess whether
this could point to metabolites or classes of metabolites associated with the suppres-
sive phenotype. The selective amplification of functional domains allows the capture
of biosynthetic diversity found within a complex soil sample. Specifically, we used PCR
amplification of A domains of NRPSs, which are involved in the production of several
types of bioactive molecules that were previously linked to disease suppression, such
as lipopeptides and siderophores. In NRPSs, the role of A domains is to recognize and
activate amino acid substrates that are incorporated into the growing peptide (10).
Based on their sequence, it is possible to predict their amino acid specificity and match
them to databases of known or predicted BGCs.

Functional amplicon sequencing of adenylation domains across the four suppres-
sive and four conducive soils produced 4,181,437 raw reads across all samples, which
were used to identify association patterns of A domains across suppressive and condu-
cive soils. One replicate from suppressive soil S28 (FC.1) (see Fig. S1 in the supplemen-
tal material) was removed from further analysis, because it produced significantly
fewer reads than the other samples (12,380 reads, while the rest of the samples aver-
aged 61,132 reads). Processing of the reads resulted in 3,396,393 reads mapping to
51,912 unique domains. Rarefaction analysis revealed that for most samples, diversity
was sufficiently covered at;30,000 reads per sample (see Table S1).

To facilitate linking amplicon sequences to specific BGCs, we generated a high-qual-
ity shotgun metagenome assembly of one sample from the rhizosphere microbiome of
plants grown in soil S11. This soil was chosen because of its strong disease suppression

Dissecting Disease-Suppressive Rhizosphere Microbiomes

May/June 2021 Volume 6 Issue 3 e01116-20 msystems.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

2 
Ja

nu
ar

y 
20

22
 b

y 
14

9.
15

5.
20

.3
9.

https://msystems.asm.org


in this study as well as in our previous experiments (4). To increase assembly contigu-
ity, we made use of 10� linked read sequencing technology, which is able to generate
many more contiguous contigs than what is possible with conventional metagenomics
with comparable coverage. We used the dedicated cloudSPAdes 10� linked reads as-
sembler on these data, which resulted in an assembly size of 2.2 Gb and an N50 of 2.8
kb for contigs .1 kb, with the largest contig measuring 1.3Mb. Compared to the
metaSPAdes equivalent assembly, which does not make use of the linked read infor-
mation, we observed a considerable improvement in the N50 and assembly size for
contigs .5 kb (7.3 kb for regular metaSPAdes assembly and 20.2 kb for
cloudSPAdes), which makes the cloudSPAdes assembly more suited to obtain com-
plete NRPS BGCs (11).

Functional amplicon sequencing of A domains can achieve better coverage of
domains from rare BGCs than metagenomics with the same sequencing volume. This is

FIG 1 Disease index of Fusarium root rot disease of wheat grown in eight different agricultural soils. Four soils (S01, S03, S11, and
S28) were classified as disease suppressive, and four soils (S08, S14, S15, and S17) were classified as disease conducive. Dark blue,
inoculated with F. culmorum; light blue, noninoculated sterile BS dune soil was used as a control. The bars indicate the average
disease indices, with the error bars representing the standard errors of the means (n=12).
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reflected by the high diversity of domains found in natural amplicons (nAMPs), with
40,005 unique amplicons at the protein level, compared to that with the shotgun as-
sembly that yielded 8,762 unique in silico amplicons at the protein level. Remarkably,
we observed that the number of unique sequences present in all our samples sur-
passes the diversity contained in antiSMASH-DB (24,085 AMPs), the largest available
annotated database for natural product-encoding BGCs that contains sequence data
for 32,548 BGCs from 24,776 microbial genomes. To highlight the importance of envi-
ronmental sampling efforts, we further matched the nAMP sequences to in silico ampli-
cons from antiSMASH-DB. We found that most sequences were matched at or above
70% identity. However, there were 162 instances of A domains with ,30% amino acid
sequence identity to their closest representative in the database. These domains, while
still matching the Pfam domain, can potentially harbor novel functions, such as incor-
poration of different amino acids, or may simply belong to rare and uncharted BGCs.
The percentage identity of nAMPs to the closest antiSMASH-DB AMP follows a normal
distribution, with a peak to the right accounted for by (near-)perfect matches to previ-
ously sequenced clusters (Fig. 2A).

To evaluate the impact of the primer bias on the observed amplicon diversity, we
performed an inverse analysis by identifying the closest match of in silico amplicons
from antiSMASH-DB to the nAMPs from the soil, as the first is not affected by primer
bias. The results revealed a bimodal distribution (Fig. 2B and Table S2). The leftmost
mode includes amplicons not present in the samples as well as amplicons that might
be present in the samples but absent in the nAMP set because of their poor match to
the primer sequences. Still, the majority of the in silico amplicons from antiSMASH-DB
had a match in our sample of .60% sequence identity. This indicated that the primer
bias, despite being present, does not prevent the majority of the known sequence di-
versity of adenylation domains from being represented in the functional amplicon
data. These results confirm the high value of functional amplicon sequencing studies
in charting the biosynthetic potential of environmental niches. Based on these results
we see that with limited primer bias we can still get substantial coverage of nAMPs.

The dom2BGC pipeline facilitates automated annotation and networking of
functional amplicons. Current tools for the annotation of functional amplicons
(eSNaPD [12] and NaPDoS [13]) have limited applications or rely on laborious processes
which require expensive laboratory automation of bacterial artificial chromosome
(BAC) clone library approaches (CONKAT-seq [14]). To harness the potential of A do-
main functional amplicons in soils, we developed dom2BGC, a pipeline to add

FIG 2 Sequence distance between nAMPs and antiSMASH-DB in silico amplicons. (A) Histogram showing the distribution of best matches (highest
percentage identity at protein level) between each nAMP and the antiSMASH-DB in silico amplicon database. (B) Histogram showing the distribution of
best matches (highest percentage identity at protein level) between each antiSMASH-DB in silico amplicon and the nAMPs.
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taxonomical, functional, and product annotation to amplicon sequences and validate
some of the predicted clusters using shotgun metagenomics assembly data. Within
dom2BGC (Fig. 3), amplicons are matched to antiSMASH-DB and MIBiG, two natural
product BGC databases, and annotations are transferred to the query amplicons when
hits are reported above a user-set threshold (default, 95% identity). Diversity measure-
ments and community structure relationships between samples are calculated and
visualized in a series of automatically generated figures (examples, Fig. 2 and see Fig. 5
for an example network). Finally, a co-occurrence network of amplicons across the
samples is created. Neighboring amplicons mapping onto domains of known clusters
from antiSMASH-DB or MIBiG are considered domains which potentially belong to the
same original cluster. This information can then be used in designing further experi-
ments to validate the putative functions of the identified clusters.

To identify known natural product BGCs in the microbial communities, a total of
3,239 in silico amplicons were generated from MIBiG products entries (MIBiG amplicons
[MAMPs]). Of these, 1,312 unique nAMPs, corresponding to 8% of the total, were
matched and associated with a BGC for a known natural product. Notably, the most
abundant known BGC annotated encodes the biosynthesis of pyoverdine; this NRPS
gene cluster is widespread among Pseudomonas species, which are also common
members of the rhizosphere. Still, even for MIBiG entries with a perfect match and con-
sistent coverage across samples, not all of the A domains present in the reference clus-
ter amplified. This illustrates how functional amplicon sequencing provides deep cov-
erage of biosynthetic diversity across microbiome samples but also misses certain
domains because of mismatches between oligoprimers and the target sequence or
other PCR biases. This is partially balanced by the fact that most NRPS gene clusters
encode multiple A domains, which increases the chance that at least one of these
regions is amplified. As for database coverage, 119 of 860 entries with an adenylation
domain in MIBiG had at least one amplicon from our data mapping to one of its
domains with .90% amino acid identity across their lengths. This is testament to the
extensive natural product potential of soil microbial communities.

To investigate the taxonomical and gene cluster class distributions of nAMPS, a
total of 40,211 in silico amplicons were generated from antiSMASH-DB BGCs (aSAMPs)
and used to annotate 5,531 nAMPs (corresponding to 29.9% of total reads), linking
them to 1,443 different BGCs. This annotation rate constitutes about a 4-fold increase
compared to the numbers of nAMPs that were annotated using MIBiG as reference.

Disease suppression is not associated with increased adenylation domain
diversity but shows a distinct community structure. There is great need for diagnos-
tic tools to assess the disease-suppressive potential of agricultural soils based on their
microbial and functional compositions. In a recently published paper, Yuan et al. (15)
explored in a meta-analysis the potential of 16S and internal transcribed spacer (ITS)
amplicons as predictors of disease occurrence. Since A domain functional amplicon
data showed more distinctive patterns than 16S data between soils with conducive
and suppressive phenotypes (5), we set out to explore if it might be feasible to use
functional amplicon sequencing as a diagnostic tool of disease suppressiveness. To
test the possible association of within-sample amplicon diversity measures with the
suppressive phenotype, we calculated within-sample richness, evenness, and phyloge-
netic diversity (PD) for all samples based on observed unique amplicons, Simpson e,
and Faith PD, respectively. Wilcoxon rank sum tests showed no significant association
of alpha diversity measures with the presence of the pathogen or with the suppressive
phenotype for any of these metrics (Fig. 4A).

Several studies have associated overall microbial species richness or evenness in
the soil and rhizosphere with disease suppressiveness (16–20). In other studies, how-
ever, this was not the case, and suppressiveness was associated with the abundance/
enrichment of specific genera or functions (21, 22). Here, we note that suppressive soils
were both among the most and least diverse in terms of NRPS A domains, which high-
lights the importance of availability of samples from multiple sources that share the
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FIG 3 dom2BGC annotation pipeline and validation process. Amplified sequences from the rhizosphere are translated to nAMPs as per
Materials and Methods and have been annotated through comparison with in silico amplicons from MIBiG and antiSMASH databases.

(Continued on next page)
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same phenotype before drawing conclusions on the role of community diversity in dis-
ease suppression.

In a multidimensional scaling (MDS) analysis, suppressive soils did form a distinct
group based on their community profile (Fig. 4B) with significant grouping, suggesting
that similar community NRPS profiles can indeed be associated with the suppressive
phenotype based on unweighted UniFrac (permutational multivariate analysis of var-
iance [PERMANOVA] P value = 0.010, analysis of similarity [ANOSIM] P value = 0.010).
This could indicate that the observed phenotype is caused by a single or limited num-
ber of pathways, not detectable with overall richness or abundance measurements,
that directly interfere with a pathogen’s ability to colonize the rhizosphere and initiate
root penetration and disease.

Thus, it appears that sequencing the A domain community composition has the poten-
tial to become a predictive tool for diagnosing soil suppressiveness. Nevertheless, we
should emphasize that our study is based on only one host-pathogen system (wheat and
Fusarium culmorum) and a collection of eight soils. Still, the fact that the production of
compounds by NRPS and PKS enzymes plays crucial roles in other disease-suppressive soils
(22–31) supports this proposition. This method has to be further developed and validated
in the future through the inclusion of more host-pathogen systems and soils suppressive
to other soilborne fungal pathogens.

Suppressive soils are enriched in cyclic peptide-associated A domains.
Adenylation domains activate and incorporate specific amino acids in the growing
nonribosomal peptide during synthesis by an NRPS assembly line. The substrate speci-
ficity for different A domains is determined by a restricted number of residues in their
sequence (32). A domains incorporate a large variety of both proteogenic and nonpro-
teogenic amino acids, which facilitate the structural diversity of the final peptide prod-
ucts. We reasoned that prediction of the substrate specificities of the domain ampli-
cons detected in suppressive and conducive rhizosphere samples could provide new
insights into the abundance and diversity of different products, and we trained a classi-

A B

FIG 4 Community diversity and composition. (A) Adenylation domain richness across suppressive (orange bars) and conducive (blue bars) soils, calculated
as unique sequences. (B) Visualization of the adenylation domain community composition with multidimensional scaling.

FIG 3 Legend (Continued)
Richness and community composition measures are used to assess their associations with phenotype and treatments. Co-occurrence
patterns of amplicons which share similarity to the same reference BGCs were used to predict presence of (homologues of) known BGCs.
Finally, in this study, a shotgun metagenomic assembly from one of the soil samples was used to confirm the presence of these predicted
gene clusters from the amplicon data.
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fier to predict these specificities (see Materials and Methods). Intriguingly, we found
predicted threonine-specific domains to be significantly more common in suppressive
soils than in conducive soils (rank sum test P value, 0.001) (full result table in
Table S3). This is particularly interesting as threonine is an amino acid commonly
involved in lactone ring formation of cyclic and branched cyclic (lipo)peptides. Such
peptides have a large variety of natural functions, which encompass, among others,
the induction of systemic resistance in plants to fungal infection and direct antifungal
activity (6, 33–39).

Reconstruction of 31 gene clusters from amplicon data using domain annotation
and co-occurrence pattern analysis. Co-occurrence of domains across the soil samples
was used to build a pairwise co-occurrence matrix as described in Materials and
Methods. A strict filter was applied to remove spurious correlations. To this end, we
kept only the Spearman correlations above the 99th percentile, which resulted in a co-
occurrence network containing 1,618 amplicons. Associations of co-occurring ampli-
cons into putative BGCs were predicted only for co-occurring amplicons which share
annotation to one or multiple references; this resulted in the reconstruction of 31 gene
clusters (see Table S4). These clusters belonged to multiple taxonomical groups,
namely, Pseudomonas, Delftia, Streptomyces, Variovorax, Burkholderia, and Collimonas.
To validate putative network clusters, we generated 8,762 in silico amplicons from our
10� shotgun metagenome assembly as described above. Two of the 31 reconstructed
gene clusters matched to known gene cluster products predicted from the metage-
nome: the BGCs for nunamycin and delftibactin from Pseudomonas and Delftia, respec-
tively, as shown in Fig. 5 and 6.

Overview of the BGCs associated with suppressive soils. Next, we identified in
more detail the BGCs detected in the wheat rhizosphere microbiome from suppressive
soil S11. To this end, we used antiSMASH to identify BGCs in the 10� shotgun metage-
nome assembly of this soil. This resulted in 991 predicted BGCs from multiple gene
cluster families (GCFs) associated with various known compounds. Notable compounds
include siderophores such as turnerbactin, delftibactin, fimsbactin, xanthoferrin, and
amonabactin, lipopeptides such as nunamycin/nunapeptin and brabantamide (27,
40–45), and known antifungal compounds such as 2,4-diacetylphloroglucinol (26). This
array of candidate clusters offered an initial insight into putative mechanisms associ-
ated with the disease-suppressive phenotype, in which one or multiple compounds
may inhibit simultaneously or sequentially the growth of the invading pathogen and
suppress root infection.

Analysis of siderophores and lipopeptides associated with observed phenotypes.
As expected, our MIBiG-based annotations show that a considerable portion of the
amplicons (955 of 5,531) mapped to Pseudomonas A domains. A domains from this
study mapped to BGCs belonging to 68 different genera and 208 bacterial species
(Table S2). With these taxonomic annotations obtained from dom2BGC, it was possible
to identify taxonomic patterns of adenylation domains associated with soil disease
suppressiveness. Multiple species known for their biosynthetic potential and for
involvement in disease suppressiveness in other systems were significantly enriched in
suppressive soils at high taxonomical resolution (Table S4). This suggests that these
bacteria, which were previously found to exhibit antifungal activity, might also play a
role in the disease suppressiveness against F. culmorum in wheat.

DBscan clustering of the A domain co-occurrence network produced 16 clusters.
Among these clusters, 4 were associated with at least one suppressive soil. The most
interesting subnetwork (Fig. 5, cluster 6) has amplicons associated with suppressive
soil S11 and partially with soil S01, with some amplicons present across three suppres-
sive soils. Three separate domain clusters were reconstructed within this subnetwork,
with all three matching BGCs encoding the production of known siderophores, namely,
pyoverdine from Pseudomonas, scabichelin from Streptomyces, and delftibactin from
Delftia. All of these were associated with suppressive soil S11, and the last one was
associated with suppressive soil S01 as well. Siderophores are a group of secondary
metabolites produced by microorganisms in iron-limited environments such as soil.

Dissecting Disease-Suppressive Rhizosphere Microbiomes

May/June 2021 Volume 6 Issue 3 e01116-20 msystems.asm.org 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

2 
Ja

nu
ar

y 
20

22
 b

y 
14

9.
15

5.
20

.3
9.

https://msystems.asm.org


These metabolites form complexes with insoluble iron, facilitating the uptake of this
iron by microorganisms. Often, competition for iron is a central process in soil systems
with neutral to high pH (46–50). Siderophores and competition for iron were found to
be involved in soil disease suppression mechanisms against Fusarium wilt (23–25, 51,
52), take-all disease in wheat (53, 54), and damping-off sugar beet (22).

The concentrations of soluble iron in eight tested soils, as assayed in our previous
study (4), ranged from 0.01mg/kg in soil S17 to 0.11mg/kg in soil S11 with the excep-
tion of soil S03, where the concentration was much higher and reached 0.45mg/kg.
The high iron concentration in soil S03 can be explained by its low pH (5.28), which
increases the solubility of oxidized iron. All other soils had a neutral pH (7.13 to 7.82) or
were only slightly acidic (soils S01 and S08, pH 6.22 and 6.87, respectively) (Table S5
and reference 4). We observed that the broad presence of siderophores was not limited
to environments with a low availability of iron. Those results do not indicate a simple con-
nection between the concentration of soluble iron and soil disease suppressiveness
against F. culmorum. Nevertheless, the production of siderophores is so widespread

FIG 5 Domain co-occurrence network showing clusters associated with soil suppressiveness. For each of the four clusters (5, 6, 10, and 11), a heat map
shows the distribution of A domains across the samples. The heat map color scale represents the numbers of replicates in which the A domain occurred
(from dark blue [absent] to red [present in all four replicates]). Upper color bars in the heat maps describe samples: light gray, noninoculated; dark gray,
inoculated with pathogen and disease suppressiveness; orange, suppressive; blue, conducive. The left side of each heat map shows which A domains were
annotated using the MIBiG or antiSMASH databases with color bars. Color of the bars indicates a compound or compound class shown in the legend.
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among microorganisms in soil systems that we can consider it a primary process in eco-
system functioning consequently indispensable for soil disease suppressiveness.

The network hub associated with suppressive soil S03 (Fig. 5, cluster 10) contains
three predicted reconstructed gene clusters taxonomically assigned to Burkholderia,
Collimonas, and Pseudomonas. The Burkholderia and Collimonas clusters matched to
multimodular NRPSs with no known associated natural product, while the recon-
structed cluster from Pseudomonas matched to the syringafactin BGC. Finally, the pyo-
verdine BGC from Pseudomonas was recovered from a smaller amplicon subnetwork
(Fig. 5, cluster 11). While the consistent recovery of the pyoverdine BGC in multiple
hubs is expected given its ubiquity in rhizosphere-associated pseudomonads, the re-
covery of the delftibactin and scabichelin BGCs and their association to two suppres-
sive soils emphasize the contribution of different kinds of siderophores to disease sup-
pression. Our results were further confirmed by the prediction of a delftibactin BGC in
the associated shotgun metagenome assembly from soil S11 with antiSMASH, which
has an almost perfect match with the delftibactin BGC in MIBiG (Fig. 6). The largest sup-
pressive sample-associated subnetwork by number of amplicons (Fig. 5, cluster 5) pos-
sesses an individual cluster matching the scabichelin BGC from Streptomyces scabies.
This siderophore has been found to be produced by previously reported Fusarium-sup-
pressive strains (55). The reconstruction of separate instances of the same BGC suggest
that the underlying amplicons belong to variants of the scabichelin cluster present in
different rhizosphere communities.

All in all, the results suggest an association of siderophore BGCs with the disease-
suppressive phenotype across the soils studied. They also point to a possible functional
redundancy that should be validated in future work: in some soils, a suppressive

FIG 6 Selection of known BGCs predicted in the rhizosphere metagenome of suppressive soil S11. Arrows represent predicted genes and are color coded
based on their annotated function. AMP-binding domains matching to functional amplicons are highlighted as described in the legend.
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function might be mediated through the production of some siderophores (e.g., delfti-
bactin), while in other soils, the same function might be mediated by other natural
products (e.g., scabichelin).

Based on the MIBiG database, 15 lipopeptides were annotated in our samples.
Figure S2 presents the distribution of these compounds among suppressive and condu-
cive soils. Interestingly, most annotated lipopeptides are much more abundant in condu-
cive soils, especially in soil S17. Many of these lipopeptides are connected to bacterial
plant pathogens and act like pathogenicity factors (for example, syringafactin, tolaasin,
and sessilin), while others have been implicated in soil disease suppressiveness and
antagonistic interactions with fungi (for example, nunamycin and thanamycin) or inhibi-
ting the formation of bacterial biofilms (for example, white-line-inducing principle
[WLIP], entolysin, putisolvin, and xantholysin A). Many of the A domains that are part of
NRPS BGCs of plant-pathogenic bacteria are also part of NRPS BGCs of nonpathogenic
bacteria (56). Isolation of the bacteria harboring these BGCs and subsequent genetic,
genomic, transcriptomic, and mutational analyses will be needed to determine the iden-
tity as well as any functional significance of these BGCs in suppressiveness.

Conclusions. Our study provides novel insights into the NRPS AMP-binding domain
diversity of agricultural rhizosphere samples. Remarkably, the diversity of the set of
unique amplicons from this rhizosphere collection equals the level of diversity of adenyla-
tion domains found across all publicly available genomes. Annotation rates for nAMPs
were generally low, which highlights the incredible potential of plant-associated micro-
biomes for discovering novel natural products. We report significant community structure
overlap among suppressive rhizobacterial adenylation domain profiles, and we generated
new hypotheses regarding possible roles for siderophores in disease suppression against
Fusarium culmorum. We also developed a pipeline for taxonomic and functional annota-
tion of NRPS amplicons without the requirement of a BAC clone library. The dom2BGC
pipeline can be extended to and currently supports annotation of any natural product-
associated domain that occurs multiple times within a BGC and, to some extent, for any
BGC-associated domain. We validated the amplicon clustering results by reconstructing
the delftibactin BGC, a siderophore associated with suppressive soils, using a combination
of amplicon sequencing and novel 10� genomics shotgun metagenomics sequencing.
We conclude that combining functional amplicon sequencing and shotgun metagenom-
ics represents a powerful approach to probe complex microbiome-associated plant phe-
notypes and to generate new hypotheses on the functional roles of microbial metabolites
in microbe-microbe and microbe-host interactions.

MATERIALS ANDMETHODS
Soil collection. Eight soil samples (S01, S03, S08, S11, S14, S15, S17, and S28) were collected from 3-

m squares located at the center of each agricultural field in January to April 2017. In this area, topsoil
cores of approximately 30 cm in depth were collected. Soils were air dried at room temperature, homog-
enized, sieved through a 4-mm mesh sieve, and stored at 4°C. Soil S28 was additionally flaked after dry-
ing using a jaw crusher (type BB-1; Retsch, Germany). Detailed descriptions of the soil samples are
included in our previous study (4).

Disease suppressiveness assay and A domain amplification. Wheat growth conditions, pathogen
inoculation, the suppressiveness assay, A domain amplification and sequencing are described in detail
in Text S1 in the supplemental material. Briefly, wheat seedlings were transferred to substrate containing
one of the eight tested soils and challenged with pathogenic F. culmorum PV using untreated plants as
a control; each combination had 12 replicates. After 3 weeks, wheat plants were inspected for disease
symptoms and given a disease index describing the severity of infection from 0 (healthy plant) to 5
(heavily diseased), as in our previous work (4). Rhizosphere DNA was isolated from 4 randomly chosen
replicates per treatment. NRPS adenylation domains were amplified using A3F and A7R primers (57)
using Q5 polymerase.

A domain amplicon preparation. Barcoding and sequencing of the A domain amplicons were per-
formed at BaseClear (Leiden, The Netherlands) using Illumina MiSeq, which generated 4,181,437 paired-
end reads of 250 bp in length. Sequences were demultiplexed and adapters trimmed using Qiime2 (58).
Quality filtering and denoising were performed with DADA2 (59). Nucleotide sequences were translated
to amino acid sequences (for all reading frames) with transeq from the EMBOSS suite (60). Forward
sequences were aligned with the AMP-binding domain hidden Markov model (HMM) profile PF00501
from the Pfam database (version 27) (61) using hmmsearch from the HMMer package [version 3.1] (62).
The output table was parsed to retain only the conserved amino acids in the sequence corresponding to
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“match” states with the HMM profile. Protein sequences shorter than 66 amino acids were discarded.
The resulting prealigned amplicon sequences from the natural source are referred to as nAMPs (natural
amplicons) to distinguish them from the in silico amplicons used for their annotation.

103 metagenome sequencing. DNA extraction, sequencing, and assembly are described in detail
in Text S1. Briefly, 10� Genomics Chromium was used to generate a read cloud library from high-quality
rhizosphere DNA and subsequently sequenced on an Illumina NovaSeq 6000.

Feature extraction from amplicons for substrate specificity prediction. In all, 1,029 experimen-
tally validated bacterial NRPS A domains from the MIBiG database were used as a training set. Training
set sequences were aligned to the AMP-binding (PF00501) HMM, and the range of 34 residues that
aligned with positions 210 to 243 (PheA) were extracted. All duplicates and any sequences for which
there were fewer than seven training examples for a given amino acid substrate were removed from the
data set, leaving a training set of 848 sequences (available at https://git.wur.nl/traca001/dom2bgc). Each
of the 34 residues was encoded as a vector of 15 physicochemical properties, including hydrophobicity,
secondary structure, size, and polarity (5). The full vector of 510 features was used to train separate ran-
dom forest models to predict amino acid monomer specificity and broad substrate groups using the
SKLearn package (version 0.20.2) (6) in Python [version 3.7.3].

Each random forest classifier was randomly split with class-specific stratification into 90% training
and 10% test. Model parameters were tuned based on an out of bag (OOB) score for the training set
over 3 iterations. Overfitting was limited by pruning the tree depth to a maximum of 20. The number of
features randomly sampled as candidates for each split was set to the default (square root of the num-
ber of predictors). The random forest was grown to a size of 1,000 trees.

Final models for monomer and broad substrate group classification were used to make predictions
for the 51,914 soil amplicon sequences. Sequences with a prediction probability score of less than 0.5
were labeled as “no confident prediction.” Approximately 65% of the broad substrate groups and 49%
of the monomers were predicted with confidence.

dom2BGC pipeline. (i) Generation of in silico amplicons. To generate a reference data set of NRPS
functional amplicons, A domain sequences were extracted from antiSMASH-DB and MIBiG BGCs. In
dom2BGC, in silico amplicons are created by searching these sequences using hmmsearch with the A do-
main hidden Markov model (HMM) profile from Pfam (PF00501) (61). This produces reference sequences
aligned to the HMM profile. To produce in silico amplicons comparable to the nAMPs, the alignment
matching the nAMP match coordinates is extracted. This process creates in silico amplicons that are pre-
aligned to the nAMPs, which allows for quick matching between nAMPs and in silico AMPs using pair-
wise identity. Annotations available for in silico amplicons are stored to be transferred to any nAMPs
matching with it. Currently supported annotations include, where available, the taxonomy of the source
organism, the BGC type annotation based on antiSMASH predictions, and the name of the natural prod-
uct for which the production is encoded in the BGC (for domains extracted from MIBiG entries [63]).
Calculations for diversity measures and community composition are described in Text S1.

(ii) Amplicon matching and annotation. Each nAMP is matched to an in-silico amplicon if it shares
90% or more of its amino acid sequence with the reference over the full amplicon length. For nAMPs
matching to multiple in silico AMPs within a reference database, all entries are recorded. In case of multi-
ple nAMPs matching an individual in silico amplicon, all matched nAMPs are grouped for evaluation of
presence-absence patterns and abundance of the in silico amplicon.

In dom2BGC, amplicons are taxonomically annotated at the lowest rank available. In case of annota-
tion to a reference BGC with a different taxonomic annotation, dom2BGC assigns the amplicon to the
lowest common ancestor of the matching references. In addition, information from the reference cluster
on the gene cluster family is passed on to the matching amplicon. This annotation is based on
antiSMASH classification rules for predicted gene clusters. Possible annotations include NRPS, lipopepti-
des, hybrid PKS, and more. In case of an amplicon matching with reference clusters belonging to differ-
ent gene cluster families, dom2BGC reports all matches.

(iii) Co-occurrence network creation and analysis. Pairwise co-occurrence patterns of nAMPs are
calculated using Spearman rank correlation of presence-absence patterns using numpy meshgrid. To fil-
ter out spurious relationships, the correlation network contains only the strongest correlations in the
99th percentile among abundant nAMPs. In the resulting network, amplicons are nodes and edges are
drawn based on co-occurrence. Clustering within the network to define BGC hubs is performed with
DBscan. These BGC hubs, comprising highly correlated nAMPs, are inspected for nAMP annotation
enrichment. Cluster nodes and first-degree neighbors annotated to the same reference gene cluster are
further selected as putative gene clusters. Networks are visualized in Cytoscape (64), and putative clus-
ters are reported in a separate tab-separated file.

Data availability. Raw sequence data that support the findings of this study have been deposited in
NCBI under project number PRJNA719981.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, PDF file, 0.2 MB.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 1.6 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
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