163 research outputs found

    Imaging Localized States in Graphene Nanostructures

    Full text link
    Probing techniques with spatial resolution have the potential to lead to a better understanding of the microscopic physical processes and to novel routes for manipulating nanostructures. We present scanning-gate images of a graphene quantum dot which is coupled to source and drain via two constrictions. We image and locate conductance resonances of the quantum dot in the Coulomb-blockade regime as well as resonances of localized states in the constrictions in real space.Comment: 18 pages, 7 figure

    High-frequency gate manipulation of a bilayer graphene quantum dot

    Full text link
    We report transport data obtained for a double-gated bilayer graphene quantum dot. In Coulomb blockade measurements, the gate dielectric Cytop(TM) is found to provide remarkable electronic stability even at cryogenic temperatures. Moreover, we demonstrate gate manipulation with square shaped voltage pulses at frequencies up to 100 MHz and show that the signal amplitude is not affected by the presence of the capacitively coupled back gate

    Spin States in Graphene Quantum Dots

    Full text link
    We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene

    Raman spectroscopy on etched graphene nanoribbons

    Full text link
    We investigate etched single-layer graphene nanoribbons with different widths ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the D-line intensity only depends on the edge-region of the nanoribbon and that consequently the fabrication process does not introduce bulk defects. In contrast, the G- and the 2D-lines scale linearly with the irradiated area and therefore with the width of the ribbons. We further give indications that the D- to G-line ratio can be used to gain information about the crystallographic orientation of the underlying graphene. Finally, we perform polarization angle dependent measurements to analyze the nanoribbon edge-regions

    Transition to Landau Levels in Graphene Quantum Dots

    Full text link
    We investigate the electronic eigenstates of graphene quantum dots of realistic size (i.e., up to 80 nm diameter) in the presence of a perpendicular magnetic field B. Numerical tight-binding calculations and Coulomb-blockade measurements performed near the Dirac point exhibit the transition from the linear density of states at B=0 to the Landau level regime at high fields. Details of this transition sensitively depend on the underlying graphene lattice structure, bulk defects, and localization effects at the edges. Key to the understanding of the parametric evolution of the levels is the strength of the chiral-symmetry breaking K-K' scattering. We show that the parametric variation of the level variance provides a quantitative measure for this scattering mechanism. We perform measurements of the parametric motion of Coulomb blockade peaks as a function of magnetic field and find good agreement. We thereby demonstrate that the magnetic-field dependence of graphene energy levels may serve as a sensitive indicator for the properties of graphene quantum dots and, in further consequence, for the validity of the Dirac-picture.Comment: 10 pages, 11 figures, higher quality images available on reques

    Coulomb oscillations in three-layer graphene nanostructures

    Full text link
    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of 0.6\approx 0.6 meV is extracted.Comment: 10 pages, 6 figure

    Local gating of a graphene Hall bar by graphene side gates

    Full text link
    We have investigated the magnetotransport properties of a single-layer graphene Hall bar with additional graphene side gates. The side gating in the absence of a magnetic field can be modeled by considering two parallel conducting channels within the Hall bar. This results in an average penetration depth of the side gate created field of approx. 90 nm. The side gates are also effective in the quantum Hall regime, and allow to modify the longitudinal and Hall resistances

    Skyrmion automotion in confined counter-sensor device geometries

    Get PDF
    Magnetic skyrmions are topologically stabilized quasi-particles and are promising candidates for energy-efficient applications, such as storage but also logic and sensing. Here we present a new concept for a multi-turn sensor-counter device based on skyrmions, where the number of sensed rotations is encoded in the number of nucleated skyrmions. The skyrmion-boundary force in the confined geometry of the device in combination with the topology-dependent dynamics leads to the effect of automotion for certain geometries. For our case, we describe and investigate this effect with micromagnetic simulations and the coarse-grained Thiele equation in a triangular geometry with an attached reservoir as part of the sensor-counter device

    Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Get PDF
    We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of around 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure
    corecore