We present transport measurements on a tunable three-layer graphene single
electron transistor (SET). The device consists of an etched three-layer
graphene flake with two narrow constrictions separating the island from source
and drain contacts. Three lateral graphene gates are used to electrostatically
tune the device. An individual three-layer graphene constriction has been
investigated separately showing a transport gap near the charge neutrality
point. The graphene tunneling barriers show a strongly nonmonotonic coupling as
function of gate voltage indicating the presence of localized states in the
constrictions. We show Coulomb oscillations and Coulomb diamond measurements
proving the functionality of the graphene SET. A charging energy of ≈0.6 meV is extracted.Comment: 10 pages, 6 figure