We investigate etched single-layer graphene nanoribbons with different widths
ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the
D-line intensity only depends on the edge-region of the nanoribbon and that
consequently the fabrication process does not introduce bulk defects. In
contrast, the G- and the 2D-lines scale linearly with the irradiated area and
therefore with the width of the ribbons. We further give indications that the
D- to G-line ratio can be used to gain information about the crystallographic
orientation of the underlying graphene. Finally, we perform polarization angle
dependent measurements to analyze the nanoribbon edge-regions