741 research outputs found

    Нижний кембрий Западного Саяна

    Get PDF
    A miniaturized solid state laser for marking applications has been developed featuring novel assembly strategies to reduce size, cost and assembly effort. Design and setup have been laid out with future automation of the assembly in mind. Using a high precision robot the optical components composing the laser system are directly placed on a planar substrate providing accurate positioning and alignment within a few microns. No adjustable mounts for mirrors and lenses are necessary, greatly simplifying the setup. Consisting of either a ND:YAG or a Nd:YVO4 crystal pumped with a fiber coupled diode laser, a q-switch for pulse generation and a beam expander the entire assembly is confined in a 100ml space and delivers 4 W of continuous output power at 1.064 ?m with an efficiency greater than 40%. Pulse lengths of 10-20 ns and repetition rates of up to 150 kHz have been obtained with an acousto-optic modulator. In addition, a custom designed electro-optic modulator with integrated high voltage switch has been realized. A supply unit for the entire system, including scanner and water cooling, is integrated in a 19" industrial chassis and can be operated via a graphical user interface on a standard personal computer

    Guest editorial : Accounting and performance measurement in the age of rankings, quality assurance, accreditation, and excellence frameworks

    Get PDF
    ©2023 Emerald Publishing Limited. This manuscript version is made available under the Creative Commons Attribution–NonCommercial 4.0 International (CC BY–NC 4.0) license, https://creativecommons.org/licenses/by-nc/4.0/fi=vertaisarvioitu|en=peerReviewed

    The standard model at low energies

    Full text link
    The hadronic sector of the standard model at low energies is described by a non--decoupling effective field theory, chiral perturbation theory. An introduction is given to the construction of effective chiral Lagrangians, both in the purely mesonic sector and with inclusion of baryons. The connection between the relativistic formulation and the heavy baryon approach to chiral perturbation theory with baryons is reviewed.Comment: Lectures given at the 6th Indian-Summer School on Intermediate Energy Physics, Prague, Aug. 1993, Latex, 26 pages (with a4.sty), UWThPh-1993-3

    Constraints on sdγs\to d \gamma from Radiative Hyperon and Kaon Decays

    Full text link
    The quark-level process bsγb \to s \gamma has been used extensively to place constraints on new interactions. These same interactions can be further constrained from the enhancement they induce in the quark-level sdγs \to d \gamma transition, to the extent that the short distance contributions can be separated from the long distance contributions. We parameterize what is known about the long distance amplitudes and subtract it from the data in radiative hyperon and kaon decays to constrain new interactions.Comment: Latex 11 page

    Late Quaternary sedimentary processes in the central Arctic Ocean inferred from geophysical mapping

    Get PDF
    Cryospheric events in the Arctic Ocean have been largely studied through the imprints of ice sheets, ice shelves and icebergs in the seafloor morphology and sediment stratigraphy. Subglacial morphologies have been identified in the shallowest regions of the Arctic Ocean, up to 1200 m water depth, revealing the extent and dynamics of Arctic ice sheets during the last glacial periods. However, less attention has been given to sedimentary features imaged in the vicinity of the ice-grounded areas. Detailed interpretation of the sparse available swath bathymetry and sub-bottom profiles from the Lomonosov Ridge and the Amundsen Basin shows the occurrence of mass transport deposits (MTDs) and sediment waves in the central Arctic Ocean. The waxing and waning ice sheets and shelves in the Arctic Ocean have influenced the distribution of MTDs in the vicinity of grounding-ice areas, i.e. along the crest of Lomonosov Ridge. Due to the potential of Arctic sediments to hold gas hydrates, their destabilization should not be ruled out as trigger for sediment instability. Sediment waves formed by the interaction of internal waves that propagate along water mass interfaces with the bathymetric barrier of Lomonosov Ridge. This work describes the distribution and formation mechanisms of MTDs and sediment waves in the central Arctic Ocean in relation to grounding ice and internal waves between water masses respectively. The distribution of these features provides new insight into past cryospheric and oceanographic conditions of the central Arctic Ocean

    Search for the K(L) --> PI0 PI0 E+ E- Decay in the KTeV Experiment

    Full text link
    The recent discovery of a large CP violating asymmetry in K(L) --> PI+ PI- E+ E- mode has prompted us to seach for the associated K(L) --> PI0 PI0 E+ E- decay mode in the KTeV-E799 experiment at Fermilab. In 2.7E+11 K(L) decays, one candidate event has been observed with an expected background of 0.3 event, resulting in an upper limit for the K(L) --> PI0 PI0 E+ E- branching ratio of 6.6E-09 at the 90% confidence level.Comment: To be published in Phys. Rev. Let

    Structural insights into crista junction formation by the Mic60-Mic19 complex

    Get PDF
    Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie–shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function

    A patient-derived xenograft pre-clinical trial reveals treatment responses and a resistance mechanism to karonudib in metastatic melanoma

    Get PDF
    Karonudib (TH1579) is a novel compound that exerts anti-tumor activities and has recently entered phase I clinical testing. The aim of this study was to conduct a pre-clinical trial in patient-derived xenografts to identify the possible biomarkers of response or resistance that could guide inclusion of patients suffering from metastatic melanoma in phase II clinical trials. Patient-derived xenografts from 31 melanoma patients with metastatic disease were treated with karonudib or a vehicle for 18 days. Treatment responses were followed by measuring tumor sizes, and the models were categorized in the response groups. Tumors were harvested and processed for RNA sequencing and protein analysis. To investigate the effect of karonudib on T-cell-mediated anti-tumor activities, tumor-infiltrating T cells were injected in mice carrying autologous tumors and the mice treated with karonudib. We show that karonudib has heterogeneous anti-tumor effect on metastatic melanoma. Thus, based on the treatment responses, we could divide the 31 patient-derived xenografts in three treatment groups: progression group (32%), suppression group (42%), and regression group (26%). Furthermore, we show that karonudib has anti-tumor effect, irrespective of major melanoma driver mutations. Also, we identify high expression of ABCB1, which codes for p-gp pumps as a resistance biomarker. Finally, we show that karonudib treatment does not hamper T-cell-mediated anti-tumor responses. These findings can be used to guide future use of karonudib in clinical use with a potential approach as precision medicine
    corecore