31 research outputs found

    Physical and dynamical properties of the main belt triple asteroid (87) Sylvia

    Full text link
    We present the analysis of high angular resolution observations of the triple Asteroid (87) Sylvia collected with three 8-10 m class telescopes (Keck, VLT, Gemini North) and the Hubble Space Telescope. The moons' mutual orbits were derived individually using a purely Keplerian model. We computed the position of Romulus, the outer moon of the system, at the epoch of a recent stellar occultation which was successfully observed at less than 15 km from our predicted position, within the uncertainty of our model. The occultation data revealed that the Moon, with a surface-area equivalent diameter Ds=23.1±\pm0.7km, is strongly elongated (axes ratio of 2.7±\pm0.32.7±\pm0.3), significantly more than single asteroids of similar size in the main-belt. We concluded that its shape is probably affected by the tides from the primary. A new shape model of the primary was calculated combining adaptive-optics observations with this occultation and 40 archived light-curves recorded since 1978. The difference between the J2=0.024-0.009+0.016 derived from the 3-D shape model assuming an homogeneous distribution of mass for the volume equivalent diameter Dv=273±\pm10km primary and the null J2 implied by the Keplerian orbits suggests a non-homogeneous mass distribution in the asteroid's interior

    The hierarchical stability of the seven known large size ratio triple asteroids using the empirical stability parameters

    Get PDF
    In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary’s J(2) are considered. The force function is expanded in terms of mass ratios based on the Hill’s approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids

    The long-term dynamics of the Jovian irregular satellites

    No full text
    Context. The dynamical region of the Jovian irregular satellites presents an interesting web of resonances that are not yet fully understood. Of particular interest is the influence of the resonances on the stochasticity of the individual orbits of the satellites, as well as on the long-term chaotic diffusion of the different families of satellites. Aims. We make a systematic numerical study of the satellite region to determine the important resonances for the dynamics, to search for the chaotic zones, and to determine their influences on the dynamics of the satellites. We also compare these numerical results to previous analytical works. Methods. Using extensive numerical integrations of the satellites along with an indicator of chaos (MEGNO), we show global and detailed views of the retrograde and prograde regions for various dynamical models of increasing complexity and indicate the appearance of the different types of resonances and the implied chaos. Results. Along with secular and mean motion resonances that shape the dynamical regions of the satellites, we report a number of resonances involving the Great Inequality, and which are present in the system thanks to the wide range of the values of frequencies of the pericenter available for the satellites. The chaotic diffusion of the satellites is also studied and shows the long-term stability of the Ananke and Carme families, in contrast to the Pasiphae family

    Gaia, an unprecedented observatory for Solar System dynamics

    No full text
    Planetary and Space Science, 56, pp. 1812-1818, http://dx.doi.org./10.1016/j.pss..02.039International audienc

    Revisiting the identification of methane on Mars using TES data

    No full text
    The presence and variability of methane in the Martian atmosphere has been investigated by several authors and spurred a lively discussion. In this context, we address our previous inference of spatial and temporal CH4 variability identified from Mars Global Surveyor Thermal Emission Spectrometer measurements which was used to suggest the possible existence of a martian methane cycle. The importance of the topic requires a clear assessment of such variability to correctly comprehend the possible production and destruction mechanisms of Martian methane. It is therefore important to carefully revisit previous results from a different perspective to confirm them before they are used for further investigations. We here describe in detail a new procedure used to validate these earlier Thermal Emission Spectrometer measurements and thoroughly analyze the results obtained with the revised procedure. In spite of our efforts of defining an efficient data analysis procedure, we have not been able to either confirm or refute the existence of the spatial and temporal variability of methane. Nevertheless, our work has produced new interesting tools, which, with the necessary adaptation, can be of some aid in processing and interpreting planetary spectra and, in general, for all the other cases requiring a preliminary selection of data included in very extensive datasets, which are difficult to be efficiently treated with traditional techniques

    Revisiting the identification of methane on Mars using TES data

    No full text
    The presence and variability of methane in the Martian atmosphere has been investigated by several authors and spurred a lively discussion. In this context, we address our previous inference of spatial and temporal CH4 variability identified from Mars Global Surveyor Thermal Emission Spectrometer measurements which was used to suggest the possible existence of a martian methane cycle. The importance of the topic requires a clear assessment of such variability to correctly comprehend the possible production and destruction mechanisms of Martian methane. It is therefore important to carefully revisit previous results from a different perspective to confirm them before they are used for further investigations. We here describe in detail a new procedure used to validate these earlier Thermal Emission Spectrometer measurements and thoroughly analyze the results obtained with the revised procedure. In spite of our efforts of defining an efficient data analysis procedure, we have not been able to either confirm or refute the existence of the spatial and temporal variability of methane. Nevertheless, our work has produced new interesting tools, which, with the necessary adaptation, can be of some aid in processing and interpreting planetary spectra and, in general, for all the other cases requiring a preliminary selection of data included in very extensive datasets, which are difficult to be efficiently treated with traditional techniques
    corecore