313 research outputs found

    Influence of antigen distribution on the mediation of immunological glomerular injury

    Get PDF
    Influence of antigen distribution on the mediation of immunological glomerular injury. To determine if the site of immune reaction could influence the mediation and morphological expression of glomerular injury in experimental anti-glomerular basement membrane (anti-GBM) nephritis and membranous nephropathy, we studied the events that followed the in situ reaction of rat antibody with antigen planted in either the GBM (especially the lamina rara interna) or in the subepithelial space (SE). Non-nephritogenic amounts of noncomplement-fixing sheep anti-GBM or anti-tubular brushborder antibody were injected into separate groups of rats to plant sheep IgG in the GBM and SE, respectively. Kidneys containing sheep IgG were then transplanted into naive recipients that were passively immunized with rat anti-sheep IgG. There was marked proteinuria after 2 days (antigen in GBM: 226 ± 50.7; antigen in SE: 69 ± 50.7 mg/24 hr) that was abrogated by prior depletion of complement in both groups (antigen in GBM: 10.2 ± 1.7; antigen in SE: 14.3 ± 8.7 mg/24 hr). When antigen was planted in SE, inflammatory-cell depletion with either anti-neutrophil (PMN) serum or lethal irradiation had no effect on proteinuria. In contrast, anti-PMN abolished proteinuria (12.0 ± 5.6 mg/24 hr) and irradiation reduced it by 60% when antigen was in GBM. Glomeruli of kidneys with antigen in GBM were significantly larger and more hypercellular than those with antigen in SE after transplantation into immunized recipients. Endothelial cell injury and adherence of inflammatory cells to denuded GBM were prominent in the former (antigen in GBM), while glomeruli with antigen in SE showed only subepithelial deposits, adjacent slit-diaphragm displacement, and epithelial cell foot-process effacement. Thus, the reaction of antigen and antibody in glomeruli produced complement-mediated injury which was cell-independent when complex formation occurred on the outer aspect of the GBM but was cell-dependent when the same reagents reacted more proximally to the circulation. We therefore conclude that antigen distribution can critically influence the mediation and morphologic expression of immune glomerular injury and may, in part, account for variations in the clinical and histological manifestations of antibody-induced glomerular disease in humans.Influence de la distribution antigénique sur la médiation des lésions glomérulaires immunologiques. Afin de déterminer si le site de la réaction immune pourrait influencer la médiation et l'expression morphologique des lésions glomérulaires lors d'une néphrite expérimentale anti-membrane basale glomérulaire (anti-GBM) et d'une néphropathie extra-membraneuse, nous avons étudié les événements qui suivaient la réaction in situ d'anticorps de rat avec un antigène fixé soit dans la GBM (surtout dans la lamina rara interna), soit dans l'espace sous-épithélial (SE). Des quantités non nephritogènes d'anticorps anti-GBM, ou anti-bordure en brosse tubulaire de mouton ne fixant pas le complément ont été injectées à différents groupes de rats pour fixer de l'IgG de mouton dans la GBM et le SE, respectivement. Les reins contenant l'IgG de mouton étaient alors transplantés à des receveurs vierges passivement immunisés avec de l'IgG de rat antimouton. Il existait une protéinurie marquée après deux jours (antigène dans la GBM: 226 ± 50,7; antigène dans SE: 69 ± 50,7 mg/24 hrs) qui à été abrogé par une déplétion du complement dans les deux groupes (antigène dans la GBM: 10,2 ± 1,7; antigène dans SE: 14,3 ± 8,7 mg/24 hr). Lorsque l'antigène était fixé dans SE, une déplétion en cellules inflammatoires par du sérum anti-neutrophile (PMN) ou une irradiation léthale n'avaient pas d'effet sur la protéinurie. A l'opposé, anti-PMN supprimait la protéinurie (12,0 ± 5,6 mg/24 hr) et l'irradiation la réduisait de 60% lorsque l'antigène était dans la GBM. Les glomérules de reins ayant l'antigène dans la GBM étaient significativement plus gros et plus hyper-cellulaires que ceux ayant l'antigène dans SE après transplantation chez des receveurs immunisés. Les lésions cellulaires endothéliales et l'adhérence des cellules inflammatoires à des GBM nues étaient prédominantes chez les premiers (antigène dans la GBM) alors que les glomérules ayant l'antigène dans SE présentaient uniquement des dépôts sous-épithéliaux, un déplacement du slit-diaphragme adjacent et un effacement des pédicelles des cellules épithéliales. Ainsi, la réaction d'un antigène et d'un anticorps dans des glomérules a produit des lésions à médiation complémentaire indépentantes des cellules lorsque la formation de complexes survenait dans la partie extérieure de la GBM, mais dépendantes des cellules lorsque les mêmes réactifs interagissaient de façon plus proximale dans la circulation. Nous concluons donc que la distribution antigénique peut influencer de manière critique la médiation et l'expression morphologique des lésions glomérulaires immunes et qu'elle peut, en partie, rendre compte de variations dans les manifestations cliniques et histologiques de glomérulopathies à médiation par anticorps chez l'homme

    IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Get PDF
    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure

    A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube

    Get PDF
    Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies 30\gtrsim30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ\nu_\mu-induced tracks from the Northern hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index 2.50±0.09-2.50\pm0.09 and a flux at 100 TeV of (6.71.2+1.1)1018GeV1s1sr1cm2\left(6.7_{-1.2}^{+1.1}\right)\cdot10^{-18}\,\mathrm{GeV}^{-1}\mathrm{s}^{-1}\mathrm{sr}^{-1}\mathrm{cm}^{-2}. Under the same assumptions, an unbroken power law with index 2-2 is disfavored with a significance of 3.8 σ\sigma (p=0.0066%p=0.0066\%) with respect to the best fit. This significance is reduced to 2.1 σ\sigma (p=1.7%p=1.7\%) if instead we compare the best fit to a spectrum with index 2-2 that has an exponential cut-off at high energies. Allowing the electron neutrino flux to deviate from the other two flavors, we find a νe\nu_e fraction of 0.18±0.110.18\pm0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay dominated sources, is rejected with a significance of 3.6 σ\sigma (p=0.014%p=0.014\%).Comment: 16 pages, 10 figures; accepted for publication in The Astrophysical Journal; updated one referenc

    Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    Get PDF
    A diffuse flux of astrophysical neutrinos above 100TeV100\,\mathrm{TeV} has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35TeV35\,\mathrm{TeV} and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (fe:fμ:fτ)(1:1:1)(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of (0:1:0)(0:1:0)_\oplus is excluded at 3.3σ3.3\sigma, and a purely shower-like composition of (1:0:0)(1:0:0)_\oplus is excluded at 2.3σ2.3\sigma.Comment: 8 pages, 3 figures. Submitted to PR

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations

    Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    Get PDF
    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than 1%\sim1\% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.Comment: 15 pages, 3 figure
    corecore