11 research outputs found

    Prediction of Antimicrobial and Antioxidant Activities of Mexican Propolis by 1H-NMR Spectroscopy and Chemometrics Data Analysis

    No full text
    A feasibility study to predict antimicrobial and antioxidant activity properties of propolis extracts using 700-MHz 1H-NMR spectra and multivariate regression data analysis is presented. The study was conducted with thirty-five propolis samples to develop a rapid and reliable method for the evaluation of their quality. The extracts have been evaluated by measuring phenolic and flavonoid contents; the antioxidant activity; and the antimicrobial activity. The obtained spectral data were submitted to multivariate calibration (partial least squares (PLS) and orthogonal partial least squares (OPLS)) to correlate the relative intensity and position of NMR resonance peaks with the metabolites contents and biological activities. The developed PLS and OPLS model were successfully applied to the determination of the target properties for proof of the concept. The OPLS observed vs. predicted properties plots indicate the absence of systematic errors with determination coefficients between the ranges 0.7207 to 0.9990. Up to 86.1% of explication of variation in the spectral data and 99.9% in the measured properties were attained with 88.6% of prediction capabilities in the best case (S. mutans activity) according to the cross-validation procedure. The figures of merit of the developed PLS and OPLS methods were evaluated and compared as well

    In vitro antileishmanial activity of Mexican medicinal plants

    No full text
    Aim of the study: To evaluate the anti-leishmanial activity and cytotoxicity of aqueous and organic extracts of ten plants used in Mexican traditional medicine as anti-parasitics. Materials and methods: For the organic extracts, plant material was macerated in dichloromethane (CH2Cl2) and dichloromethane/methanol (CH2Cl2/MeOH) (1:1) during two weeks; the aqueous extracts were prepared by infusion. The extracts were tested against promastigotes and intracellular amastigotes of Leishmania amazonensis. The cytotoxicity was assayed in parallel on peritoneal macrophages of BALB/c mice. Results: Four of the thirty extracts tested were active and selective against L. amazonensis promastigotes: Schinus molle (CH2Cl2 and CH2Cl2/MeOH), Lantana camara (CH2Cl2) and Prosopis laevigata (aqueous). These extracts had a median inhibitory concentration (IC50) against intracellular amastigotes under 50 μg/mL and a selectivity index (SI) higher than 5, which indicates that they constitute valuable candidates to obtain secondary metabolites with leishmanicidal activity. Conclusions: The results derived from this study indicate that L. camara, P. laevigata, and S. molle might provide interesting new leads for the development of antileishmanial drugs

    Affinin (Spilanthol), Isolated from Heliopsis longipes, Induces Vasodilation via Activation of Gasotransmitters and Prostacyclin Signaling Pathways

    No full text
    Heliopsis longipes roots have been widely used in Mexican traditional medicine to relieve pain, mainly, toothaches. Previous studies have shown that affinin, the major alkamide of these roots, induces potent antinociceptive and anti-inflammatory activities. However, the effect of H. longipes root extracts and affinin on the cardiovascular system have not been investigated so far. In the present study, we demonstrated that the dichloromethane and ethanolic extracts of H. longipes roots, and affinin, isolated from these roots, produce a concentration-dependent vasodilation of rat aorta. Affinin-induced vasorelaxation was partly dependent on the presence of endothelium and was significantly blocked in the presence of inhibitors of NO, H2S, and CO synthesis (NG-nitro-l-arginine methyl ester (l-NAME), dl-propargylglycine (PAG), and chromium mesoporphyrin (CrMP), respectively); K+ channel blockers (glibenclamide (Gli) and tetraethyl ammonium (TEA)), and guanylate cyclase and cyclooxygenase inhibitors (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and indomethacin (INDO), respectively). Our results demonstrate, for the first time, that affinin induces vasodilation by mechanisms that involve gasotransmitters, and prostacyclin signaling pathways. These findings indicate that this natural alkamide has therapeutic potential in the treatment of cardiovascular diseases

    Effect of Pinocembrin Isolated from Mexican Brown Propolis on Diabetic Nephropathy

    No full text
    Propolis is a resinous beehive product that has been used worldwide in traditional medicine to prevent and treat colds, wounds, rheumatism, heart disease and diabetes. Diabetic nephropathy is the final stage of renal complications caused by diabetes and for its treatment there are few alternatives. The present study aimed to determine the chemical composition of three propolis samples collected in Chihuahua, Durango and Zacatecas and to evaluate the effect of pinocembrin in a model of diabetic nephropathy in vivo. Previous research demonstrated that propolis of Chihuahua possesses hypoglycemic and antioxidant activities. Two different schemes were assessed, preventive (before renal damage) and corrective (once renal damage is established). In the preventive scheme, pinocembrin treatment avoids death of the rats, improves lipid profile, glomerular filtration rate, urinary protein, avoid increases in urinary biomarkers, oxidative stress and glomerular basement membrane thickness. Whereas, in the corrective scheme, pinocembrin only improves lipid profile without showing improvement in any other parameters, even pinocembrin exacerbated the damage. In conclusion, pinocembrin ameliorates diabetic nephropathy when there is no kidney damage but when it is already present, pinocembrin accelerates kidney damage

    Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits

    No full text
    The present research aimed to isolate the non-polar secondary metabolites that produce the vasodilator effects induced by the dichloromethane extract of Prunus serotina (P. serotina) fruits and to determine whether the NO/cGMP and the H2S/KATP channel pathways are involved in their mechanism of action. A bioactivity-directed fractionation of the dichloromethane extract of P. serotina fruits led to the isolation of ursolic acid and uvaol as the main non-polar vasodilator compounds. These compounds showed significant relaxant effect on rat aortic rings in an endothelium- and concentration-dependent manner, which was inhibited by NG-nitro-l-arginine methyl ester (l-NAME), dl-propargylglycine (PAG) and glibenclamide (Gli). Additionally, both triterpenes increased NO and H2S production in aortic tissue. Molecular docking studies showed that ursolic acid and uvaol are able to bind to endothelial NOS and CSE with high affinity for residues that form the oligomeric interface of both enzymes. These results suggest that the vasodilator effect produced by ursolic acid and uvaol contained in P. serotina fruits, involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE

    Analysis of volatile components from <i>Melipona beecheii</i> geopropolis from Southeast Mexico by headspace solid-phase microextraction

    No full text
    <div><p>A head space solid-phase microextraction method combined with gas chromatography–mass spectrometry was developed and optimised to extract and analyse volatile compounds of <i>Melipona beecheii</i> geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53–15.45%), styrene (8.72–9.98%), benzaldehyde (7.44–7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).</p></div

    Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    No full text
    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content
    corecore