311 research outputs found
Formation of Turing structures in catalytic surface reactions: The facetting of Pt(110) in CO+O<sub>2</sub>
The Pt(110) surface facets during the catalytic oxidation of CO, if reaction conditions are adjusted such that the CO‐induced 1×1⇄1×2 phase transition can take place simultaneously. A detailed low‐energy electron diffraction beam profile analysis revealed that regularly spaced (430) and (340) facets are formed with a lateral periodicity of ∼70 lattice units along the [11̄0] direction. This result, together with the observation that the facetted surface is only stable under reaction conditions, indicates a dissipative structure of the Turing type. Such structures, which are stationary but exhibit a periodic variation of the concentration variables in space, have so far almost exclusively been discussed theoretically. The interpretation of the facetted surface as a Turing structure could be confirmed by a Monte Carlo simulation based on the Langmuir Hinshelwood mechanism of catalytic CO oxidation and the CO‐induced 1×1⇄1×2 phase transition
Integrated force interaction simulation model for milling strategy optimization of thin-walled Blisk blade machining
Complex shaped thin-walled blades that are extensively used in jet engines or stream turbines are very difficult to machine due to low rigidity of the blades, typically limited space between the blades and strict requirements on the surface quality and accuracy. The paper focuses on multi-axis machining of thin-walled and complex shaped Blisk blades made of aluminium alloys. The resulting surface quality and accuracy is mainly affected by the risk of elevated vibration occurrence, both forced and self-excited, and static deflections between the compliant tool and workpiece. An innovative integration of the transformed FE model of the blade into virtual machining simulation has been proposed, allowing to effectively solve the complex optimization task considering both the criterion of stable machining condition and static deflections as well. When choosing a machining strategy and cutting conditions, there are many variables that fundamentally affect the process. These variables are not easy to choose correctly the first time, so it is advisable to choose to use a simulation model in production preparation. The proposed simulation model allowed to effectively optimize the process parameters to keep the machining process stable and the static deformation of tool and workpiece under a defined level. The proposed model and optimization strategy was validated on a thin-walled blade machining. At the top part of the blade, the surface roughness decreased from 1.6 Ra to 0.84 Ra, and the maximum deviations from the reference model were reduced from 0.18 mm to 0.08 mm
Self-limited oxide formation in Ni(111) oxidation
The oxidation of the Ni(111) surface is studied experimentally with low
energy electron microscopy and theoretically by calculating the electron
reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio
scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions
leads to the formation of a continuous NiO(111)-like film consisting of
nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous
film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit
virtually the same energy-dependent reflectivity as in the case of 300 K and
which are separated by oxygen-free Ni(111) terraces. The scattering theory
explains the observed normal incidence reflectivity R(E) of both the clean and
the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is
determined by a forbidden gap in the k_parallel=0 projected energy spectrum of
the bulk NiO crystal. However, for both low and high temperature oxidation a
rapid decrease of the reflectivity in approaching zero kinetic energy is
experimentally observed. This feature is shown to characterize the thickness of
the oxide layer, suggesting an average oxide thickness of two NiO layers.Comment: 10 pages (in journal format), 9 figure
Nanoscale analysis of the oxidation state and surface termination of praseodymium oxide ultrathin films on ruthenium(0001)
The complex structure and morphology of ultrathin praseodymia films deposited on a ruthenium(0001) single crystal substrate by reactive molecular beam epitaxy is analyzed by intensity-voltage low-energy electron microscopy in combination with theoretical calculations within an ab initio scattering theory. A rich coexistence of various nanoscale crystalline surface structures is identified for the as-grown samples, notably comprising two distinct oxygen-terminated hexagonal Pr2O3(0001) surface phases as well as a cubic Pr2O3(111) and a fluorite PrO2(111) surface component. Furthermore, scattering theory reveals a striking similarity between the electron reflectivity spectra of praseodymia and ceria due to very efficient screening of the nuclear charge by the extra 4f electron in the former case
Recommended from our members
Field-scale model for air sparging performance assessment and design
Air sparging has been used as an in situ technique to remove VOCs from contaminated groundwater: air is injected into the groundwater from an injection well, and the VOC partitions into the air phase and rises to the unsaturated zone, where another technique, such as soil vapor extraction, is used to remove the gases from the vadose zone. A computer model that accurately describes the process is needed. This project comprises model development and laboratory experiments, conducted independently. The model will be tested using the laboratory data. Only preliminary results are available. Preliminary laboratory column tests have been conducted along with some modeling to simulate the removal of a single VOC from a soil column. Comparison show that a finite element code is able to predict removal of methane and TCE. To determine if the air flow pattern in air sparging is predictable, experiments were done in a large-scale reactor and compared to numerical simulations
Real-time low-energy electron microscopy study of Ga adsorption and facet array formation on Si(113)
n/
Surface evolution of 4H-SiC(0001) during in-situ surface preparation and its influence on graphene properties
The evolution of SiC surface morphology during graphene growth process has been studied through the comparison of substrate surface step structure after in-situ etching and graphene growth in vacuum. Influence of in-situ substrate surface preparation on the properties of graphene was studied through the comparison of graphene layers on etched and un-etched substrates grown under same conditions. © (2013) Trans Tech Publications, Switzerland
Quasicrystals and their approximants in 2D ternary oxides
2D oxide quasicrystals (OQCs) are recently discovered aperiodic, but well-ordered oxide interfaces. In this topical review, an introduction to these new thin-film systems is given. The concept of quasicrystals and their approximants is explained for BaTiO3 - and SrTiO3 - derived OQCs and related periodic structures in these 2D oxides. In situ microscopy unravels the high-temperature formation process of OQCs on Pt(111). The dodecagonal structure is discussed regarding tiling statistics and tiling decoration based on the results of atomically resolved scanning tunneling microscopy and various diffraction techniques. In addition, angle-resolved ultraviolet photoemission spectroscopy and X-ray photoelectron spectroscopy results prove a metallic character of the 2D oxide
- …