309 research outputs found

    Formation of Turing structures in catalytic surface reactions: The facetting of Pt(110) in CO+O<sub>2</sub>

    Get PDF
    The Pt(110) surface facets during the catalytic oxidation of CO, if reaction conditions are adjusted such that the CO‐induced 1×1⇄1×2 phase transition can take place simultaneously. A detailed low‐energy electron diffraction beam profile analysis revealed that regularly spaced (430) and (340) facets are formed with a lateral periodicity of ∌70 lattice units along the [11̄0] direction. This result, together with the observation that the facetted surface is only stable under reaction conditions, indicates a dissipative structure of the Turing type. Such structures, which are stationary but exhibit a periodic variation of the concentration variables in space, have so far almost exclusively been discussed theoretically. The interpretation of the facetted surface as a Turing structure could be confirmed by a Monte Carlo simulation based on the Langmuir Hinshelwood mechanism of catalytic CO oxidation and the CO‐induced 1×1⇄1×2 phase transition

    Integrated force interaction simulation model for milling strategy optimization of thin-walled Blisk blade machining

    Get PDF
    Complex shaped thin-walled blades that are extensively used in jet engines or stream turbines are very difficult to machine due to low rigidity of the blades, typically limited space between the blades and strict requirements on the surface quality and accuracy. The paper focuses on multi-axis machining of thin-walled and complex shaped Blisk blades made of aluminium alloys. The resulting surface quality and accuracy is mainly affected by the risk of elevated vibration occurrence, both forced and self-excited, and static deflections between the compliant tool and workpiece. An innovative integration of the transformed FE model of the blade into virtual machining simulation has been proposed, allowing to effectively solve the complex optimization task considering both the criterion of stable machining condition and static deflections as well. When choosing a machining strategy and cutting conditions, there are many variables that fundamentally affect the process. These variables are not easy to choose correctly the first time, so it is advisable to choose to use a simulation model in production preparation. The proposed simulation model allowed to effectively optimize the process parameters to keep the machining process stable and the static deformation of tool and workpiece under a defined level. The proposed model and optimization strategy was validated on a thin-walled blade machining. At the top part of the blade, the surface roughness decreased from 1.6 Ra to 0.84 Ra, and the maximum deviations from the reference model were reduced from 0.18 mm to 0.08 mm

    Self-limited oxide formation in Ni(111) oxidation

    Full text link
    The oxidation of the Ni(111) surface is studied experimentally with low energy electron microscopy and theoretically by calculating the electron reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions leads to the formation of a continuous NiO(111)-like film consisting of nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit virtually the same energy-dependent reflectivity as in the case of 300 K and which are separated by oxygen-free Ni(111) terraces. The scattering theory explains the observed normal incidence reflectivity R(E) of both the clean and the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is determined by a forbidden gap in the k_parallel=0 projected energy spectrum of the bulk NiO crystal. However, for both low and high temperature oxidation a rapid decrease of the reflectivity in approaching zero kinetic energy is experimentally observed. This feature is shown to characterize the thickness of the oxide layer, suggesting an average oxide thickness of two NiO layers.Comment: 10 pages (in journal format), 9 figure

    Nanoscale analysis of the oxidation state and surface termination of praseodymium oxide ultrathin films on ruthenium(0001)

    Get PDF
    The complex structure and morphology of ultrathin praseodymia films deposited on a ruthenium(0001) single crystal substrate by reactive molecular beam epitaxy is analyzed by intensity-voltage low-energy electron microscopy in combination with theoretical calculations within an ab initio scattering theory. A rich coexistence of various nanoscale crystalline surface structures is identified for the as-grown samples, notably comprising two distinct oxygen-terminated hexagonal Pr2O3(0001) surface phases as well as a cubic Pr2O3(111) and a fluorite PrO2(111) surface component. Furthermore, scattering theory reveals a striking similarity between the electron reflectivity spectra of praseodymia and ceria due to very efficient screening of the nuclear charge by the extra 4f electron in the former case

    Surface evolution of 4H-SiC(0001) during in-situ surface preparation and its influence on graphene properties

    Get PDF
    The evolution of SiC surface morphology during graphene growth process has been studied through the comparison of substrate surface step structure after in-situ etching and graphene growth in vacuum. Influence of in-situ substrate surface preparation on the properties of graphene was studied through the comparison of graphene layers on etched and un-etched substrates grown under same conditions. © (2013) Trans Tech Publications, Switzerland

    Quasicrystals and their approximants in 2D ternary oxides

    Get PDF
    2D oxide quasicrystals (OQCs) are recently discovered aperiodic, but well-ordered oxide interfaces. In this topical review, an introduction to these new thin-film systems is given. The concept of quasicrystals and their approximants is explained for BaTiO3 - and SrTiO3 - derived OQCs and related periodic structures in these 2D oxides. In situ microscopy unravels the high-temperature formation process of OQCs on Pt(111). The dodecagonal structure is discussed regarding tiling statistics and tiling decoration based on the results of atomically resolved scanning tunneling microscopy and various diffraction techniques. In addition, angle-resolved ultraviolet photoemission spectroscopy and X-ray photoelectron spectroscopy results prove a metallic character of the 2D oxide
    • 

    corecore