2,020 research outputs found
Discrete Morse functions for graph configuration spaces
We present an alternative application of discrete Morse theory for
two-particle graph configuration spaces. In contrast to previous constructions,
which are based on discrete Morse vector fields, our approach is through Morse
functions, which have a nice physical interpretation as two-body potentials
constructed from one-body potentials. We also give a brief introduction to
discrete Morse theory. Our motivation comes from the problem of quantum
statistics for particles on networks, for which generalized versions of anyon
statistics can appear.Comment: 26 page
High density QCD on a Lefschetz thimble?
It is sometimes speculated that the sign problem that afflicts many quantum
field theories might be reduced or even eliminated by choosing an alternative
domain of integration within a complexified extension of the path integral (in
the spirit of the stationary phase integration method). In this paper we start
to explore this possibility somewhat systematically. A first inspection reveals
the presence of many difficulties but - quite surprisingly - most of them have
an interesting solution. In particular, it is possible to regularize the
lattice theory on a Lefschetz thimble, where the imaginary part of the action
is constant and disappears from all observables. This regularization can be
justified in terms of symmetries and perturbation theory. Moreover, it is
possible to design a Monte Carlo algorithm that samples the configurations in
the thimble. This is done by simulating, effectively, a five dimensional
system. We describe the algorithm in detail and analyze its expected cost and
stability. Unfortunately, the measure term also produces a phase which is not
constant and it is currently very expensive to compute. This residual sign
problem is expected to be much milder, as the dominant part of the integral is
not affected, but we have still no convincing evidence of this. However, the
main goal of this paper is to introduce a new approach to the sign problem,
that seems to offer much room for improvements. An appealing feature of this
approach is its generality. It is illustrated first in the simple case of a
scalar field theory with chemical potential, and then extended to the more
challenging case of QCD at finite baryonic density.Comment: Misleading footnote 1 corrected: locality deserves better
investigations. Formula (31) corrected (we thank Giovanni Eruzzi for this
observation). Note different title in journal versio
Persistent Homology Over Directed Acyclic Graphs
We define persistent homology groups over any set of spaces which have
inclusions defined so that the corresponding directed graph between the spaces
is acyclic, as well as along any subgraph of this directed graph. This method
simultaneously generalizes standard persistent homology, zigzag persistence and
multidimensional persistence to arbitrary directed acyclic graphs, and it also
allows the study of more general families of topological spaces or point-cloud
data. We give an algorithm to compute the persistent homology groups
simultaneously for all subgraphs which contain a single source and a single
sink in arithmetic operations, where is the number of vertices in
the graph. We then demonstrate as an application of these tools a method to
overlay two distinct filtrations of the same underlying space, which allows us
to detect the most significant barcodes using considerably fewer points than
standard persistence.Comment: Revised versio
Area-charge inequality for black holes
The inequality between area and charge for dynamical black
holes is proved. No symmetry assumption is made and charged matter fields are
included. Extensions of this inequality are also proved for regions in the
spacetime which are not necessarily black hole boundaries.Comment: 21 pages, 2 figure
Homotopy types of stabilizers and orbits of Morse functions on surfaces
Let be a smooth compact surface, orientable or not, with boundary or
without it, either the real line or the circle , and
the group of diffeomorphisms of acting on by the rule
, where and .
Let be a Morse function and be the orbit of under this
action. We prove that for , and
except for few cases. In particular, is aspherical, provided so is .
Moreover, is an extension of a finitely generated free abelian
group with a (finite) subgroup of the group of automorphisms of the Reeb graph
of .
We also give a complete proof of the fact that the orbit is tame
Frechet submanifold of of finite codimension, and that the
projection is a principal locally trivial -fibration.Comment: 49 pages, 8 figures. This version includes the proof of the fact that
the orbits of a finite codimension of tame action of tame Lie group on tame
Frechet manifold is a tame Frechet manifold itsel
The Legacy of ERA, Privatization and the Policy Ratchet
This article explores the ways in which the neo-liberal impetus toward the privatization of state schooling signalled in the Education Reform Act 1988 (ERA) has become embedded in the English school system. Four main points are made. First, that ERA itself was of huge strategic rather than substantive importance as far as privatization is concerned. Second, by tracing the lineage of privatization from ERA onwards a 'ratchet' effect of small and incremental policy moves can be identified, which have disseminated, embedded and naturalized privatization within public sector provision. Third, that while privatization has been taken up and taken much further by New Labour than it had been by the Conservatives there are differences between the two sets of governments in the role of privatization in education policy and the role of the state. Fourth, the participation of private providers in the planning and delivery of state services has put the private sector at the very heart of policy. At points the article draws upon interviews conducted with private sector providers. © 2008 Sage Publications
Lithologic Controls on Focused Erosion and Intraplate Earthquakes in the Eastern Tennessee Seismic Zone
We present a new geomorphic model for the intraplate eastern Tennessee seismic zone (ETSZ). Previous studies document that the Upper Tennessee drainage basin is in a transient state of adjustment to ~150 m of base level fall that occurred in the Late Miocene. Using quantitative geomorphology, we demonstrate that base level fall resulted in the erosion of ~3,500 km3 of highly erodibility rock in an ~70 km wide by ~350âkmâlong corridor in the Paleozoic foldâthrust belt above the ETSZ. Models of modern incision rates show a NEâSW trending swath of elevated erosion ~30 km southeast of the center of the ETSZ. Stress modeling shows that lithologically focused erosion has affected fault clamping stress on preexisting, favorably oriented faults. We argue that the lithologically controlled transient erosional response to base level fall in the Upper Tennessee basin has given rise to and is sustaining earthquake activity in the ETSZ
- âŠ