9,885 research outputs found

    Unveiling shocks in planetary nebulae

    Full text link
    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.Comment: 13 pages, 9 figures, 3 tables; To appear in Astronomy & Astrophysic

    Gypsum scarps and asymmetric fluvial valleys in evaporitic terrains. The role of river migration, landslides, karstification and lithology (Ebro River, NE Spain)

    Get PDF
    Most of the Spanish fluvial systems excavated in Tertiary evaporitic gypsum formations show asymmetric valleys characterized by a stepped sequence of fluvial terraces on one valley flank and kilometric-long and > 100-m high prominent river scarp on the opposite side of the valley. Scarp undermining by the continuous preferential lateral migration of the river channel toward the valley margin leads to vertical to overhanging unstable slopes affected by a large number of slope failures that become the main geological hazard for villages located at the toe of the scarps. Detailed mapping of the gypsum scarps along the Ebro and Huerva Rivers gypsum scarps demonstrates that landslides and lateral spreading processes are predominant when claystones crop out at the base of the scarp, while rockfalls and topples become the dominant movement in those reaches where the rock mass is mainly constituted by evaporites. The dissolution of gypsum nodules, seasonal swelling and shrinking, and dispersion processes contribute to a decrease in the mechanical strength of claystones. The existence of dissolution-enlarged joints, sinkholes, and severely damaged buildings at the toe of the scarp from karstic subsidence demonstrates that the interstratal karstification of evaporites becomes a triggering factor in the instability of the rock mass. The genesis of asymmetric valleys and river gypsum scarps in the study area seem to be caused by the random migration of the river channel in the absence of lateral tilting related to tectonics or dissolution-induced subsidence. Once the scarp is developed, its preservation depends on the physicochemical properties of the substratum, the ratio between bedrock erosion and river incision rates, and climatic conditions that favour runoff erosion versus dissolution

    The Quantum Arnold Transformation and its applications

    Get PDF
    The Quantum Arnold Transformation, a unitary operator mapping the solutions of the Schr¨odinger equation for time-dependent quadratic Hamiltonians into free-particle solutions, is revisited. Possible applications and extensions are also outlined: the analytic construction of harmonic states for the free particle, the Quantum Arnold-Ermakov-Pinney transformation and the description of the Release & Recapture method

    Harmonic states for the free particle

    Full text link
    Different families of states, which are solutions of the time-dependent free Schr\"odinger equation, are imported from the harmonic oscillator using the Quantum Arnold Transformation introduced in a previous paper. Among them, infinite series of states are given that are normalizable, expand the whole space of solutions, are spatially multi-localized and are eigenstates of a suitably defined number operator. Associated with these states new sets of coherent and squeezed states for the free particle are defined representing traveling, squeezed, multi-localized wave packets. These states are also constructed in higher dimensions, leading to the quantum mechanical version of the Hermite-Gauss and Laguerre-Gauss states of paraxial wave optics. Some applications of these new families of states and procedures to experimentally realize and manipulate them are outlined.Comment: 21 pages, 3 figures. Title changed, content added, references adde

    A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

    Full text link
    Water maser emission at 22 GHz is a useful probe to study the transition between the nearly spherical mass-loss in the AGB to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae (PNe) once photoionization starts. We intend to find new cases of post-AGB stars and PNe with water maser emission, including water fountains or water-maser-emitting PNe. We observed water maser emission in a sample of 133 objects, with a significant fraction being post-AGB and young PN candidate sources with strong obscuration. We detected this emission in 15 of them, of which seven are reported here for the first time. We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ~96 km/s in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate). The water maser spectra of water fountain candidates like IRAS 17291-2147 show significantly less maser components than others (e.g., IRAS 18113-2503). We speculate that most post-AGBs may show water maser emission with wide enough velocity spread (> 100 km/s) when observed with enough sensitivity and/or for long enough periods of time. Therefore, it may be necessary to single out a special group of "water fountains", probably defined by their high maser luminosities. We also suggest that the presence of both water and OH masers in a PN is a better tracer of its youth, rather than the presence of just one of these species.Comment: To be published in Astronomy & Astrophysics. 16 pages, 1 figure (spanning 5 pages). This version includes some minor language corrections and fixes some errors in Table

    VISIR-VLT high resolution study of the extended emission of four obscured post-AGB candidates

    Full text link
    The onset of the asymmetry of planetary nebulae (PNe) is expected to occur during the late Asymptotic Giant Branch (AGB) and early post-AGB phases of low- and intermediate-mass stars. Among all post-AGB objects, the most heavily obscured ones might have escaped the selection criteria of previous studies detecting extreme axysimmetric structures in young PNe. Since the most heavily obscured post-AGB sources can be expected to descend from the most massive PN progenitors, these should exhibit clear asymmetric morphologies. We have obtained VISIR-VLT mid-IR images of four heavily obscured post-AGB objects barely resolved in previous Spitzer IRAC observations to analyze their morphology and physical conditions across the mid-IR. The VISIR-VLT images have been deconvolved, flux calibrated, and used to construct RGB composite pictures as well as color and optical depth maps that allow us to study the morphology and physical properties of the extended emission of these sources. We have detected extended emission from the four objects in our sample and resolved it into several structural components that are greatly enhanced in the temperature and optical depth maps. They reveal the presence of asymmetry in three young PNe (IRAS 15534-5422, IRAS 17009-4154, and IRAS 18454+0001), where the asymmetries can be associated with dusty torii and slightly bipolar outflows. The fourth source (IRAS 18229-1127), a possible post-AGB star, is better described as a rhomboidal detached shell. The heavily obscured sources in our sample do not show extreme axisymmetric morphologies. This is at odds with the expectation of highly asymmetrical morphologies in post-AGB sources descending from massive PN progenitors. The sources presented in this paper may be sampling critical early phases in the evolution of massive PN progenitors, before extreme asymmetries develop.Comment: 9 pages, 4 figure

    The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models

    Get PDF
    A considerable proportion of the damaging sinkholes worldwide correspond to human-induced subsidence events related to groundwater withdrawal and the associated water-table decline (e.g. aquifer overexploitation, dewatering for mining). Buoyancy loss in pre-existing cavity roofs is generally claimed to be the main underlying physical mechanism. It has been also postulated that rapid water-table drawdowns may create a vacuum effect in the subsurface and contribute to enhance sinkhole activity in karstic terrains with a low effective porosity cover. Our laboratory physical model explores the role played by vacuum pressure induced water-table drops with different magnitudes and rates on sinkhole development, simulating an invariable mantled karst comprising cavernous bedrock and a low-permeability cover. The multiple tests performed include real-time monitoring of the water level drawdown (magnitude, duration, rate), the negative air pressures in the bedrock cavity and the cover, and several features of the subsidence phenomena (deformation style, size, magnitude, rate). The main findings derived from the test results include: (1) Vacuum pressure may trigger the development of cover collapse sinkholes in areas with low-permeability covers. (2) Different water-table decline patterns (magnitude, duration, rate) may result in different subsidence styles or rheological behaviours: sagging versus collapse. (3) Ground fissuring, frequently related to extension at the margin of sagging depressions, may cancel or significantly diminish the vacuum effect. (4) An overall direct relationship between the water-table decline rate and the subsidence rate. Some possible strategies are proposed to ameliorate the adverse effect of the negative air pressure on sinkhole hazard, which most probably has a local impact restricted by the concurrence of rapid water drawdowns and low-permeability covers

    Model of the meniscus of an ionic liquid ion source.

    Get PDF
    A simple model of the transfer of charge and ion evaporation in the meniscus of an ionic-liquid ion source working in the purely ionic regime is proposed on the basis of order-of-magnitude estimates which show that, in this regime, _i_ the flow in the meniscus is dominated by the viscosity of the liquid and is affected very little by the mass flux accompanying ion evaporation, and _ii_ the effect of the space charge around the evaporating surface is negligible and the evaporation current is controlled by the finite electrical conductivity of the liquid. The model predicts that a stationary meniscus of a very polar liquid undergoing ion evaporation is nearly hydrostatic and can exist only below a certain value of the applied electric field, at which the meniscus attains its maximum elongation but stays smooth. The electric current vs applied electric field characteristic displays a frozen regime of negligible ion evaporation at low fields and a conduction-controlled regime at higher fields, with a sharp transition between the two regimes owing to the high sensitivity of the ion evaporation rate to the electric field. A simplified treatment of the flow in the capillary or liquid layer through which liquid is delivered to the meniscus shows that the size of the meniscus decreases and the maximum attainable current increases when the feeding pressure is decreased, and that appropriate combinations of feeding pressure and pressure drop may lead to high maximum currents
    corecore