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Summary. — The Quantum Arnold Transformation, a unitary operator mapping
the solutions of the Schrödinger equation for time-dependent quadratic Hamiltonians
into free-particle solutions, is revisited. Possible applications and extensions are
also outlined: the analytic construction of harmonic states for the free particle,
the Quantum Arnold-Ermakov-Pinney transformation and the description of the
Release & Recapture method.

PACS 03.65.-w – Quantum mechanics.
PACS 02.30.Hq – Ordinary differential equations.
PACS 03.65.Db – Functional analytical methods.
PACS 02.20.-a – Group theory.

1. – Introduction

In this paper we shall review the Quantum Arnold Transformation (QAT), introduced
in [1] as a unitary map that relates the space of solutions of the one-dimensional time-
dependent Schrödinger equation (TDSE) for an arbitrary, time-dependent, quadratic
Hamiltonian (TDQH), into the corresponding one for the free particle. The QAT is
an extension to the quantum domain of the (Classical) Arnold Transformation (CAT),
introduced by V.I. Arnold in [2]. In that reference, it was observed that the family
of graphs of solutions of any linear second-order differential equation (LSODE), with
arbitrary time-dependent coefficients, is locally diffeomorphic to the family of graphs of
solutions of the simplest one-dimensional equation of motion, i.e., the equation of motion
of a free particle. Making use of that fact, it is possible to import the Lie point symmetries
of the free particle (which has the largest possible Lie point symmetry group, SL(3, R))
into those of an arbitrary system whose equation of motion is a LSODE. The CAT can
be seen as a particular class of more general Lie transformations relating systems defined
by second order differential equations to the free particle [3].
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In order to fully benefit from the properties and implications of the CAT at the
quantum level, the explicit formalization of the QAT is key. However, many authors
had already taken advantage of such properties, at least partially. Lewis and Riesen-
feld (1969) [4] introduced a technique to obtain solutions of the TDSE for a TDQH
as eigenfunctions of quadratic invariants. For that purpose they wrote the solutions in
terms of auxiliary variables that satisfy the classical equations of motion (something that
resembles very much the CAT). Dodonov and Man’ko (1979) [5] constructed invariant
operators for the damped harmonic oscillator and introduced coherent states, using a
similar method to that of Lewis and Riesenfeld. Jackiw (1980) [6] gave (implicitly) the
quantum transformation from the harmonic oscillator (even with a 1/x2 term) to the
free particle when studying the symmetries of the magnetic monopole. Junker and Ino-
mata (1985) [7] gave the transformation of the propagator, in a path integral approach,
for a TDQH, into the free one (the equivalent of the QAT, but in terms propagators).
Takagi (1990) [8] gave the quantum transformation from the harmonic oscillator to the
free particle, interpreted as the change to comoving coordinates. Bluman and Shtelen
(1996) [9] gave the (non-local) transformation of the TDSE for a TDQH plus a non-linear
term into the free particle one, in the context of transformations of PDEs. Kagan et al.
and independently Castin and Dum (1996) [10] introduced a scaling transformation in
the Gross-Pitaevskii equation describing Bose-Einstein Condensates (BEC) which is very
related to the QAT. Suslov et al. (2010) [11] computed the propagator for a TDQH using
the classical equations.

The paper is organized as follows: sect. 2 reviews the CAT transforming solutions of
an arbitrary LSODE into free particle solutions, and studies its properties. Section 3
introduces the QAT as the quantum version of the CAT. Finally, sect. 4 describes several
relevant applications of the QAT: the analytic construction of harmonic states for the
free particle, the Quantum Arnold-Ermakov-Pinney transformation (an extension of the
QAT to connect two arbitrary LSODE systems) and the description of the Release &
Recapture method in the framework of the QAT.

2. – Classical Arnold Transformation

In the context of Lie point symmetries of ordinary differential equations (ODE) [3],
a second-order differential equation y′′ = F (x, y, y′) has the maximal number of Lie
point symmetries (SL(3, R)) if it can be transformed into the free equation by a point
transformation:

y′′ = F (x, y, y′)
x̃=x̃(x,y)
ỹ=ỹ(x,y)

=⇒ ỹ′′ = 0.(1)

V.I. Arnold studied the case of Linear Second-Order Differential Equations (LSODE),
giving explicitly the point transformation to the free case [2]. Given

ẍ + ḟ ẋ + ω2x = Λ,(2)

where f , ω and Λ are functions of t, and the dots indicate derivatives with respect to
t, the Arnold transformation, here named Classical Arnold Transformation (CAT), is
a local diffeomorphism A : R × T → R × T (T and T are open intervals) given by
(x, t) → (κ, τ) = A(x, t), where

κ =
x − up(t)

u2(t)
, τ =

u1(t)
u2(t)

.(3)
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Here u1 and u2 are independent solutions of the homogeneous LSODE corresponding
to (2) and up is a particular solution of (2). For convenience, we impose u1, u2 and up

to satisfy the initial conditions:

u1(t0) = u̇2(t0) = up(t0) = u̇p(t0) = 0, u̇1(t0) = u2(t0) = 1,(4)

where t0 is an arbitrary time, conveniently chosen to be t0 = 0 (see [1] for details). With
this condition, (0, 0) is a fixed point of A.

The CAT transforms the equation of motion ẍ + ḟ ẋ + ω2x = Λ, up to factor, into
that of a free particle W

u3
2
κ̈ = 0, where W (t) = u̇1u2−u1u̇2 = e−f is the Wronskian of the

two solutions. The presence of this factor implies that patches of trajectories of (2) are
transformed into patches of straight (free) trajectories. Indeed, an arbitrary trajectory
solution of (2) can be written as x(t) = Au1(t) + Bu2(t) + up(t), and the CAT sends it
to κ(τ) = Aτ + B. While t varies in the interval T defined by two consecutive zeros of
u2(t) (containing t0 = 0), τ varies in the range of the map defined by u1(t)

u2(t)
. In the case

in which u2(t) has no zeros T is R.

2.1. The example of the harmonic oscillator . – Let us include here the expressions
corresponding to the simple example of the harmonic oscillator that will be useful in
the following. In this case, Λ = 0, ḟ = 0 and ω is constant; then, the two solutions
verifying (4) are u1(t) = 1

ω sin(ωt) and u2(t) = cos(ωt). The open interval T defined by
two consecutive zeros of u2(t), and containing t0 = 0, is (− π

2ω , π
2ω ), and the CAT A and

its inverse A−1 are then written as

A : κ =
x

u2(t)
=

x

cos(ωt)
, τ =

u1(t)
u2(t)

=
1
ω

tan(ωt),(5)

A−1 : x = cos(arctan(ωτ))κ =
κ√

1 + ω2τ2
, t =

1
ω

arctan(ωt).(6)

So, τ ∈ R. Therefore the CAT maps half a period of the HO trajectories into a complete
free trajectory. For the CAT to map other patches of the HO trajectories into the free
particle trajectories, different branches of the arctan function in the inverse CAT (6)
should be used (and a different t0 �= 0 for the CAT). See [12, 13] for more details in this
case.

3. – The Quantum Arnold Transformation

An arbitrary LSODE system (2) can be derived from the Hamiltonian

H =
p2

2m
e−f +

(
1
2
mω2x2 − mΛx

)
ef ,(7)

which is known as the generalized Caldirola-Kanai (GCK) Hamiltonian for a damped
oscillator (see [1] and references therein). The case in which ḟ = γ and ω are con-
stant corresponds to the original Caldirola-Kanai Hamiltonian for a damped harmonic
oscillator. Canonical quantization of the GCK Hamiltonian leads to the time-dependent
Schrödinger equation:

i�
∂φ

∂t
= − �

2

2m
e−f ∂2φ

∂x2
+

(
1
2
mω2x2 − mΛx

)
efφ.(8)
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The CAT A is a local (in time) diffeomorphism between the space of solutions of the
LSODE system (2) and the space of solutions of the free particle. We are interested in
extending it to a unitary transformation Â, the Quantum Arnold Transformation (QAT),
between the Hilbert space of solutions φ(x, t) of the time-dependent Schrödinger equation
for the GCK oscillator (8) at time t, Ht, into the Hilbert space of solutions ϕ(κ, τ) of
the time-dependent Schrödinger equation for the free particle, i�∂ϕ

∂τ = − �
2

2m
∂2ϕ
∂κ2 , at time

τ , HG
τ . The desired extension is given by

Â : Ht −→ HG
τ ,

φ(x, t) �−→ ϕ(κ, τ) = Â
(
φ(x, t)

)
= A∗(√u2(t) e

− i
2

m
�

1
W (t)

u̇2(t)
u2(t) x2

φ(x, t)
)
.

(9)

Here A∗ is the pullback of the CAT A, acting on functions, and for simplicity of notation
we have assumed Λ = 0, but it can be included in a straightforward way (see [1] for
details). The QAT can be diagrammatically represented as

HG
τ

Â←−−−− Ht

ÛG(τ)

�⏐⏐ �⏐⏐Û(t)

HG
0 ≡ H −−−−→

1̂
H ≡ H0

,(10)

where H0 ≡ HG
0 ≡ H is the common Hilbert space of solutions of the Schrödinger

equation for both systems at t = τ = 0, U(t) is the unitary time-evolution operator for
the GCK oscillator and ÛG(τ) is the corresponding one for the free particle. The map at
the bottom of the diagram is the identity due to conditions (4), otherwise a non-trivial
unitary transformation appears (see [1]).

The QAT inherits from the CAT the local character in time, in the sense that it is
valid only for t ∈ T and τ ∈ T . To extend the QAT beyond T , we can proceed as in
the classical case for the harmonic oscillator, considering the different branches of the
inverse function of τ(t), defining an unfolded QAT, ˆ̃A [13]. It should be stressed that if
in the different branches of the unfolded CAT proper solutions verifying (4) are not used,
changes in signs can appear reflected as changes in phases in the different branches of
the unfolded QAT. This phenomenon seems to be related to the Maslov correction (see
for instance [14]).

4. – Applications of the QAT

From the commutative diagram (10) it is clear that the QAT is a unitary operator
(see [15] for a proof), and this has interesting and far-reaching consequences. Among
them we can mention the possibility of importing operators (symmetries) from one system
to the other, importing wave functions, scalar product, computing the time evolution
operator, etc. We shall only discuss some of them here, referring the reader to [1,12,15,16]
for more details.

4.1. Harmonic states for the free particle. – Thanks to the commutativity of the
diagram (10), and the unitarity of the operators appearing in it, we can map objects
(wave functions, operators, expectation values, uncertainties) from one system to the
other. In [1] we benefited from this fact for transporting the simplicity of the free particle
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to more involved systems, finding, for instance, an analytic expression for the evolution
operator of the complicated systems (even with time-dependent Hamiltonians) in terms of
the free particle evolution operator. Let us proceed the other way round (following [12]),
transporting objects and properties from the harmonic oscillator to the free particle.

Let H be the Hilbert space of solutions of the time-dependent Schrödinger equation
for the free particle, and HHO the one corresponding to the harmonic oscillator of a
given frequency ω. We shall denote by ψ(x, t) ∈ H the free particle solutions and by
ψ′(x′, t′) ∈ HHO the harmonic oscillator ones. Then, the inverse of the QAT is given by

ψ′(x′, t′) = Â−1ψ(x, t) =
1√

u2(t′)
e

i
2

m
�

1
W (t′)

u̇2(t′)
u2(t′) x′2

ψ

(
x′

u2(t′)
,
u1(t′)
u2(t′)

)
,(11)

where expressions from subsect. 2.1 must be used.
Applying the QAT to the time-dependent eigenstates of the harmonic oscillator Hamil-

tonian Ĥ ′
HO, with energy En = �ω(n + 1

2 ),

ψ′
n(x′, t′) = Nne−iω(n+ 1

2 )t′e−
mω
2�

x′2
Hn

(√
mω

�
x′

)
,(12)

where Nn = (mω
�π )

1
4 1√

2nn!
, we obtain the following set of states, solutions of the

Schrödinger equation for the free particle:

ψn(x, t) = Nn
1√
|δ|

e
− x2δ∗

4L2|δ|2

(
δ∗

|δ|

)n+ 1
2

Hn

(
x√

2L|δ|

)
,(13)

where we have used formulas of subsect. 2.1 for the CAT and, in order to obtain a more

compact notation, we have introduced the quantities L =
√

�

2mω , with the dimensions

of length, and τ = 2mL2

�
= ω−1, with the dimensions of time. We also denote by δ the

complex, time-dependent, dimensionless expression δ = 1+iωt = 1+i �t
2mL2 = 1+i t

τ . We
have also used the fact that e−iωt′ = e−i tan−1(ωt) = δ∗

|δ| . Note that with these definitions

the normalization factor Nn can be written as Nn = (2π)−
1
4√

2nn!L
.

The wave functions (13) are known in the literature as Hermite-Gauss wave pack-
ets [17], and they have been widely used, in their two-dimensional version (see [12]),
in paraxial wave optics [18]. However, this kind of states are better understood in the
framework of the QAT. Note that, making use of the classical solutions only, and through
the QAT, we have been able to import the time evolution from the stationary states of
the harmonic oscillator, ψ′

n(x′, t′), to the non-stationary ones, ψn(x, t), without solving
the time-dependent Schrödinger equation.

The QAT also allows to map invariant operators from one Hilbert space (HHO) to the
other (H). These invariant operators are also known as constant or integral of motion
operators, in the sense that their matrix elements are constant with respect to their cor-
responding time evolution, and preserve their respective Hilbert spaces. Particularizing
the general expression given in [1] or by direct computation, the conserved position and
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momentum operator for the harmonic oscillator can be written as

X̂ ′ =
u̇1(t′)
W (t′)

x′ +
i�

m
u1(t′)

∂

∂x′ = cos ωt′ x′ +
i�

mω
sin ωt′

∂

∂x′ ,

P̂ ′ = −i� u2(t′)
∂

∂x′ − m
u̇2(t′)
W (t′)

x′ = −i� cos ωt′
∂

∂x′ + mω sin ωt′ x′,

and therefore, the conserved creation and annihilation operators are

â′ =
1

2L
X̂ ′ + i

L

�
P̂ ′ = eiωt′

(
1

2L
x′ + L

∂

∂x′

)
,

â′† =
1

2L
X̂ ′ − i

L

�
P̂ ′ = e−iωt′

(
1

2L
x′ − L

∂

∂x′

)
.

Note that these are the operators acting on solutions of the time-dependent Schrödinger
equation for the harmonic oscillator ψ′

n(x′, t′) as ladder operators.
Position and momentum operators X̂ ′ and P̂ ′ are mapped into operators representing

conserved position and momentum operators for the free particle through the QAT:

X̂ = x +
i�

m
t

∂

∂x
,

P̂ = −i�
∂

∂x
.

As a consequence, ladder operators for the harmonic oscillator can be mapped into
ladder operators for the free particle that act as creation and annihilation operators for
the (time-dependent) Hermite-Gauss states:

â = Lδ
∂

∂x
+

x

2L
,

â† = −Lδ∗
∂

∂x
+

x

2L
.(14)

The action of â and â† on the Hermite-Gauss wave functions is the usual one:

âψn(x, t) =
√

n ψn−1(x, t), â†ψn(x, t) =
√

n + 1 ψn+1(x, t).(15)

It is possible to introduce this discrete basis without resorting to the QAT in a very
intuitive manner. The key point is that the operator â annihilates the Gaussian wave
packet, and this fact characterizes it. The whole family of states (13) can be generated by
acting with the adjoint operator â† of â. The rest of the construction, i.e. uncertainties,
coherent and squeezed states, etc. would proceed without the need of resorting to the
QAT. However, the QAT is very useful when performing involved computations in a very
easy way [12].
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4.2. The Arnold-Ermakov-Pinney transformation. – Although the CAT and the QAT
relate any LSODE system with the free particle, the dynamics of both systems can be
very different(1). Thus, it could be interesting to relate directly two arbitrary LSODE
systems with similar behavior, and this can be achieved by composing a CAT and an
inverse CAT (or a QAT and an inverse QAT). This idea has been presented in [15], and
we reproduce it in the following.

Let A1 and A2 denote the CATs relating the LSODE-system 1 and LSODE-system 2
to the free particle, respectively. Then, E = A−1

1 A2 relates LSODE-system 2 to LSODE-
system 1. E can be written as

E : R × T2 → R × T1

(x2, t2) �→ (x1, t1) = E(x2, t2).(16)

The explicit form of the transformation can be easily computed by composing the two
CATs, resulting in

x1 =
x2

b(t2)
W1(t1)dt1 =

W2(t2)
b(t2)2

dt2,(17)

where b(t2) = u
(2)
2 (t2)

u
(1)
2 (t1)

satisfies the non-linear SODE:

b̈ + ḟ2ḃ + ω2b =
W 2

2

W 2
1

1
b3

[
ω2

1 + ḟ1
u̇

(1)
2

u
(1)
2

(
1 − b2 W1

W2

)]
,(18)

and where u
(j)
i refers to the i-th particular solution for system j; Wj , ḟj and ωj stand for

the Wronskian and the LSODE coefficients for system j; and the dot means derivation
with respect to the corresponding time function.

For the particular case where LSODE-system 1 is a harmonic oscillator (ω1(t1) ≡ ω0

and ḟ1 = 0), this expression simplifies to

b̈ + ḟ2ḃ + ω2b =
W 2

2

b3
ω2

0 ,(19)

resulting in a generalization of the Ermakov-Pinney equation. For ḟ2 = 0 the Ermakov-
Pinney equation (also known as Milne-Pinney) is recovered [19-21]:

b̈ + ω2b =
ω2

0

b3
,(20)

representing a harmonic oscillator of frequency ω2 with an extra inverse squared potential
ω2

0
x2 . For ω0 = 0, the Arnold-Ermakov-Pinney transformation reduces to the ordinary
CAT, i.e. E = A.

(1) Consider, for example, the harmonic oscillator with a bounded, periodic motion as compared
with the free particle, with an unbounded non-periodic motion.
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The Ermakov-Pinney equation is related to the Ermakov invariant [19,4] and appears
in many branches of physics, such as Cosmology [22], BEC [23], etc. Its generalization
to higher dimensions, known as Ermakov pairs (or system), appears in BEC [10] and in
what is known as Kepler-Ermakov systems [24].

The Ermakov-Pinney equation entails a kind of nonlinear superposition principle, in
the sense that its solutions can be written in terms of the solutions y1(t), y2(t) of the
corresponding linear equation (with ω0 = 0):

b(t)2 = c1y1(t)2 + c2y2(t)2 + 2c3y1(t)y2(t), c1c2 − c2
3 = ω2

0 .(21)

The other way round, the general solution y(t) of the linear equation can be written
in terms of a particular solution ρ(t) of the Ermakov-Pinney equation (20) as

y(t) = c1ρ(t) cos(ω0 θ(t) + c2),(22)

where c1, c2 are arbitrary constants and θ(t) =
∫ t

ρ−2dt′. Note that this equation is
just (17) for W1 = W2 = 1, t1 = θ(t2), ρ = b, x2 = y(t2) and x1 = y(t2)/b(t2) =
c1 cos(ω0t1 + c2). As a result, the general solution of (20) can be determined from a
particular solution ρ(t) using (22) and (21).

The quantum version of the Arnold-Ermakov-Pinney transformation, Ê, can be ob-
tained computing the composition of a QAT and an inverse QAT, to give

Ê : H(2)
t2 −→ H(1)

t1 ,

φ(x2, t2) �−→ ϕ(x1, t1) = Ê (φ(x2, t2))(23)

= E∗
(√

b(t2) e
− i

2
m
�

1
W2(t2)

ḃ(t2)
b(t2) x2

2φ(x2, t2)
)

.

The Quantum Arnold-Ermakov-Pinney transformation is a unitary map importing
solutions of a GCK Schrödinger equation from solutions of a different, auxiliary GCK
Schrödinger equation which, in particular, can be the one corresponding to a harmonic
oscillator. In that case the transformation is very similar to the one used in Bose-Einstein
Condensates, known as scaling transformation to transform the time-dependent poten-
tial (oscillator traps with time-dependent frequencies) into a time-independent harmonic
oscillator potential [10]. Also, in that case (i.e. for ḟ2 = 0, W2 = 1, ḟ1 = 0, W1 = 1) equa-
tion (23) reduces to the transformation given by Hartley and Ray [25] (this was already
given by Lewis and Riesenfeld in [4]). However, the Quantum Arnold-Ermakov-Pinney
transformation allows to choose in a suitable way the auxiliary system from which the
solutions may be imported.

4.3. Release & Recapture. – Let us describe the situation of a particle in a harmonic
potential which is switched off (Release) at a given time T0. After that, the particle
will evolve freely and then, at time T1, is captured again (Recapture) by another (in
particular, the same) harmonic potential. Time evolution will then be harmonic again
until an arbitrary time T2. The complete process is know as Release & Recapture (R&R)
and it is usually used to measure the effective temperature of an ensemble of atoms in a
trap [26], or even of a single atom [27]. When the effective temperature of the ensemble
or single atom is low enough, the trap can be considered harmonic. At even lower



THE QUANTUM ARNOLD TRANSFORMATION AND ITS APPLICATIONS 135

temperatures, the thermal effects can be neglected and the state of the atom can be
described by a wave function(2).

The process of Release is of practical relevance(3), for instance in the preparation
of the 1-dimensional Hermite-Gauss free states (13). This idea was proposed in [28],
and was named “Quamtum Sling”. The vacuum state of the harmonic oscillator, after
the harmonic potential is switched off, will provide the “vacuum” Gaussian wave packet

with width L =
√

�

2mω , where m is the mass of the particle and ω the frequency of the
oscillator. Note that the dispersion time τ coincides with the inverse of the frequency of
the oscillator.

If we “recapture” one of these traveling states at time T1 switching on a harmonic
oscillator potential with a frequency ω1, it would “freeze” in a harmonic-oscillator state
(without dispersion). The frequency ω1 used to capture the dispersed wave packet might
be fine tuned in such a way that the wave packet, at the time T1, matches an appropriate
eigenstate (with the same n) of the harmonic oscillator with frequency ω1.

We can wonder which is the resulting wave function ψ′(T2) after the whole R&R
process, given a state prepared for the initial harmonic oscillator ψ′(T0)? Assuming
the sudden approximation (instead of the adiabatic one), the formal solution will be a
product of two evolution operators, describing free evolution from T0 to T1, and harmonic
one with the new frequency ω1 from T1 to T2:

ψ′(T2) = Û ′
ω1

(T2, T1)Û(T1, T0)ψ′(T0).(24)

Before proceeding, let us discuss a little bit of notation. In subsect. 4.1, we have used
lowercase, unprimed letters for quantities referring to the free particle and lowercase,
primed ones for those of the harmonic oscillator. Now we are indicating physical or true
time with capital T ’s. As the Arnold transformation includes a diffeomorphism in time,
if we are going to use it as a tool to perform calculations, we have to be very careful of not
confusing the physical time with that used in the Arnold transformations. Recovering
the notation of lowercase letters, fix T0 = t0 = t′0. Then T1 = t1 = u1(t

′
1)

u2(t′1)
, with u1 and

u2 satisfying (4) at t′0, and denote by t′ = T2.
Denote by Âω,t0(t) the QAT from a harmonic oscillator of frequency ω performed at

time t, and by Û ′
ω the unitary time evolution operator for that harmonic oscillator. With

this notation and the previous choice of classical solutions u1 and u2 (subsect. 2.1), for
t = t0 Âω,t0(t0) is the identity.

Now, the product (24) can be decomposed by a sequence of a QAT and harmonic
oscillator evolution operators splitting the free evolution operator (see figure in [16],
where a more general case is considered):

ψ′(t′) = Û ′
ω1

(t′, t1)Âω,t0(t1)Û
′
ω(t′1, t0)ψ

′(t0).(25)

An obvious generalization of the proposed method consists in increasing the number
of captures and releases (in [16] a R&R&R process is considered). On the other hand,

(2) If this is not the case, the following treatment is still valid, but density matrices should be
used, see sect. 6 in [12].
(3) It is also used in BECs, there called ballistic expansion, where it is used to measure the
distribution of velocities of the condensate.
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depending on the particular initial state, it may be a better choice a path of calculation
along purely free evolutions and inverse Arnold transformations.

Note that the harmonic evolution will be particularly simple if the frequency ω1

is such that the width of the wave packet fits a natural width of this second-harmonic
potential. Intuitively, one might say that, in this situation, the particle would be captured
in an eigenstate of the oscillator Hamiltonian with frequency ω1. However, this is not
the case: it can be checked that an extra, position-dependent phase exp(i ω2t21

4L2|δ1|2 x2)
appears, where δ1 = 1 + iωt1. This fact and the relationship with the “quasistationary”
or “pseudostationary” states appearing in [5] will be analyzed elsewhere.

When the same frequency ω is used to capture the state in the harmonic-oscillator
trap, the resulting state will be a radially squeezed state with squeezing parameter r given
by r = − log(|δ1|), which is negative. This can be seen as a feasible way of producing
squeezing in trapped states, simply by a R&R process on the trap for a lapse of time
t, resulting in a squeezing parameter r = − 1

2 log(1 + ω2t2). In fact, a similar way of
producing squeezed states in Bose-Einstein Condensates was reported in [29].
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