9,242 research outputs found

    Cepheid and Tip of the Red Giant Branch Distances To the Dwarf Irregular Galaxy IC10

    Get PDF
    We present color-magnitude diagrams and luminosity functions of stars in the nearby galaxy IC 10, based on VI CCD photometry acquired with the COSMIC prime-focus camera on the Palomar 5m telescope. The apparent I-band luminosity function of stars in the halo of IC 10 shows an identifiable rise at I~21.7 mag. This is interpreted as being the tip of the red giant branch (TRGB) at M_V~-4 mag. Since IC 10 is at a very low Galactic latitude, its foreground extinction is expected to be high and the uncertainty associated with that correction is the largest contributor to the error associated with its distance determination. Multi-wavelength observations of Cepheid variable stars in IC 10 give a Population I distance modulus of 24.1 +- 0.2 mag, which corresponds to a linear distance of 660 +- 66 kpc for a total line-of-sight reddening of E(B-V) = 1.16 +- 0.08 mag, derived self-consistently from the Cepheid data alone. Applying this Population I reddening to the Population II halo stars gives a TRGB distance modulus of 23.5 +- 0.2 mag, corresponding to 500 +- 50 kpc. We consider this to be a lower limit on the TRGB distance. Reconciling the Cepheid and TRGB distances would require that the reddening to the halo is Δ\DeltaE(B-V) = 0.31 mag lower than that into the main body of the galaxy. This then suggests that the Galactic extinction in the direction of IC10 is (B-V) ~ 0.85

    Quantum Field Theory and Differential Geometry

    Full text link
    We introduce the historical development and physical idea behind topological Yang-Mills theory and explain how a physical framework describing subatomic physics can be used as a tool to study differential geometry. Further, we emphasize that this phenomenon demonstrates that the interrelation between physics and mathematics have come into a new stage.Comment: 29 pages, enlarged version, some typewritten mistakes have been corrected, the geometric descrition to BRST symmetry, the chain of descent equations and its application in TYM as well as an introduction to R-symmetry have been added, as required by mathematicia

    The 8^8B Neutrino Spectrum

    Full text link
    Knowledge of the energy spectrum of 8^8B neutrinos is an important ingredient for interpreting experiments that detect energetic neutrinos from the Sun. The neutrino spectrum deviates from the allowed approximation because of the broad alpha-unstable 8^8Be final state and recoil order corrections to the beta decay. We have measured the total energy of the alpha particles emitted following the beta decay of 8^8B. The measured spectrum is inconsistent with some previous measurements, in particular with a recent experiment of comparable precision. The beta decay strength function for the transition from 8^8B to the accessible excitation energies in 8^8Be is fit to the alpha energy spectrum using the R-matrix approach. Both the positron and neutrino energy spectra, corrected for recoil order effects, are constructed from the strength function. The positron spectrum is in good agreement with a previous direct measurement. The neutrino spectrum disagrees with previous experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos correcte

    The Equation of State for Dense QCD and Quark Stars

    Get PDF
    We calculate the equation of state for degenerate quark matter to leading order in hard-dense-loop (HDL) perturbation theory. We solve the Tolman-Oppenheimer-Volkov equations to obtain the mass-radius relation for dense quark stars. Both the perturbative QCD and the HDL equations of state have a large variation with respect to the renormalization scale for quark chemical potential below 1 GeV which leads to large theoretical uncertainties in the quark star mass-radius relation.Comment: 7 pages, 3 figure

    Geometrical approach to SU(2) navigation with Fibonacci anyons

    Full text link
    Topological quantum computation with Fibonacci anyons relies on the possibility of efficiently generating unitary transformations upon pseudoparticles braiding. The crucial fact that such set of braids has a dense image in the unitary operations space is well known; in addition, the Solovay-Kitaev algorithm allows to approach a given unitary operation to any desired accuracy. In this paper, the latter task is fulfilled with an alternative method, in the SU(2) case, based on a generalization of the geodesic dome construction to higher dimension.Comment: 12 pages, 5 figure

    BVRIJK light curves and radial velocity curves for selected Magellanic Cloud Cepheids

    Get PDF
    We present high precision and well sampled BVRIJK light curves and radial velocity curves for a sample of five Cepheids in the SMC. In addition we present radial velocity curves for three Cepheids in the LMC. The low metallicity (Fe/H ~ -0.7) SMC stars have been selected for use in a Baade-Wesselink type analysis to constrain the metallicity effect on the Cepheid Period-Luminosity relation. The stars have periods of around 15 days so they are similar to the Cepheids observed by the Extragalactic Distance Scale Key Project on the Hubble Space Telescope. We show that the stars are representative of the SMC Cepheid population at that period and thus will provide a good sample for the proposed analysis. The actual Baade-Wesselink analysis are presented in a companion paper.Comment: Accepted for publication in A&A, 23 pages, 10 figures, data tables will be made available electronically from the CD

    Finite resolution measurement of the non-classical polarization statistics of entangled photon pairs

    Get PDF
    By limiting the resolution of quantum measurements, the measurement induced changes of the quantum state can be reduced, permitting subsequent measurements of variables that do not commute with the initially measured property. It is then possible to experimentally determine correlations between non-commuting variables. The application of this method to the polarization statistics of entangled photon pairs reveals that negative conditional probabilities between non-orthogonal polarization components are responsible for the violation of Bell's inequalities. Such negative probabilities can also be observed in finite resolution measurements of the polarization of a single photon. The violation of Bell's inequalities therefore originates from local properties of the quantum statistics of single photon polarization.Comment: 15 pages, 5 figures and 1 table, new figure to illustrate results, improved explanation of statistical analysi
    • 

    corecore