675 research outputs found

    Ice-lens formation and connement-induced supercooling in soils and other colloidal materials

    Get PDF
    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the confinement-induced supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with experiments. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates

    Simultaneous description of four positive and four negative parity bands

    Get PDF
    The extended coherent state model is further extended in order to describe two dipole bands of different parities. The formalism provides a consistent description of eight rotational bands. A unified description for spherical, transitional and deformed nuclei is possible. Projecting out the angular momentum and parity from a sole state, the KĎ€=1+K^{\pi}=1^+ band acquires a magnetic character, while the electric properties prevail for the other band. Signatures for a static octupole deformation in some states of the dipole bands are pointed out. Some properties which distinguish between the dipole band states and states of the same parity but belonging to other bands are mentioned. Interesting features concerning the decay properties of the two bands are found. Numerical applications are made for 158^{158}Gd, 172^{172}Yb, 228,232^{228,232}Th, 226^{226}Ra, 238^{238}U and 238^{238}Pu, and the results are compared with the available data.Comment: 36 pages, 13 figures, 12 table

    "Beat" patterns for the odd-even staggering in octupole bands from a quadrupole-octupole Hamiltonian

    Get PDF
    We propose a collective Hamiltonian which incorporates the standard quadrupole terms, octupole terms classified according to the irreducible representations of the octahedron group, a quadrupole-octupole interaction, as well as a term for the bandhead energy linear in K (the projection of angular momentum on the body-fixed z-axis). The energy is subsequently minimized with respect to K for each given value of the angular momentum I, resulting in K values increasing with I within each band, even in the case in which K is restricted to a set of microscopically plausible values. We demonstrate that this Hamiltonian is able to reproduce a variety of ``beat'' patterns observed recently for the odd-even staggering in octupole bands of light actinides.Comment: LaTeX, 20 pages plus 12 figures given in separate .ps file

    Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    Full text link
    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.Comment: Submitted to PR

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    One-round strong oblivious signature-based envelope

    Get PDF
    Oblivious Signature-Based Envelope (OSBE) has been widely employed for anonymity-orient and privacy-preserving applications. The conventional OSBE execution relies on a secure communication channel to protect against eavesdroppers. In TCC 2012, Blazy, Pointcheval and Vergnaud proposed a framework of OSBE (BPV-OSBE) without requiring any secure channel by clarifying and enhancing the OSBE security notions. They showed how to generically build an OSBE scheme satisfying the new strong security in the standard model with a common-reference string. Their framework requires 2-round interactions and relies on the smooth projective hash function (SPHF) over special languages, i.e., languages from encryption of signatures. In this work, we investigate the study on the strong OSBE and make the following contributions. First, we propose a generic construction of one-round yet strong OSBE system. Compared to the 2-round BPV-OSBE, our one-round construction is more appealing, as its noninteractive setting accommodates more application scenarios in the real word. Moreover, our framework relies on the regular (identity-based) SPHF, which can be instantiated from extensive languages and hence is more general. Second, we also present an efficient instantiation, which is secure under the standard model from classical assumptions, DDH and DBDH, to illustrate the feasibility of our one-round framework. We remark that our construction is the first one-round OSBE with strong securit

    Parametrization of the octupole degrees of freedom

    Get PDF
    A simple parametrization for the octupole collective variables is proposed and the symmetries of the wave functions are discussed in terms of the solutions corresponding to the vibrational limit. [PACS: 21.60Ev, 21.60.Fw, 21.10.Re]Comment: 14 page
    • …
    corecore